Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation

Wittchen M, Busche T, Gaspar AH, Lee JH, Ton-That H, Kalinowski J, Tauch A (2018)
BMC Genomics 19(1): 82.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.22 MB
Autor*in
Wittchen, ManuelUniBi ; Busche, TobiasUniBi; Gaspar, Andrew H.; Lee, Ju Huck; Ton-That, Hung; Kalinowski, JörnUniBi; Tauch, AndreasUniBi
Abstract / Bemerkung
Background The human pathogen Corynebacterium diphtheriae is the causative agent of diphtheria. In the 1990s a large diphtheria outbreak in Eastern Europe was caused by the strain C. diphtheriae NCTC 13129. Although the genome was sequenced more than a decade ago, not much is known about its transcriptome. Our aim was to use transcriptome sequencing (RNA-Seq) to close this knowledge gap and gain insights into the transcriptional landscape of a C. diphtheriae tox+ strain. Results We applied two different RNA-Seq techniques, one to retrieve 5′-ends of primary transcripts and the other to characterize the whole transcriptional landscape in order to gain insights into various features of the C. diphtheriae NCTC 13129 transcriptome. By examining the data we identified 1656 transcription start sites (TSS), of which 1202 were assigned to genes and 454 to putative novel transcripts. By using the TSS data promoter regions recognized by the housekeeping sigma factor σA and its motifs were analyzed in detail, revealing a well conserved −10 but an only weakly conserved −35 motif, respectively. Furthermore, with the TSS data 5’-UTR lengths were explored. The observed 5’-UTRs range from zero length (leaderless transcripts), which make up 20% of all genes, up to over 450 nt long leaders, which may harbor regulatory functions. The C. diphtheriae transcriptome consists of 471 operons which are further divided into 167 sub-operon structures. In a differential expression analysis approach, we discovered that genetic disruption of the iron-sensing transcription regulator DtxR, which controls expression of diphtheria toxin (DT), causes a strong influence on general gene expression. Nearly 15% of the genome is differentially transcribed, indicating that DtxR might have other regulatory functions in addition to regulation of iron metabolism and DT. Furthermore, our findings shed light on the transcriptional landscape of the DT encoding gene tox and present evidence for two tox antisense RNAs, which point to a new way of transcriptional regulation of toxin production. Conclusions This study presents extensive insights into the transcriptome of C. diphtheriae and provides a basis for future studies regarding gene characterization, transcriptional regulatory networks, and regulation of the tox gene in particular.
Stichworte
Corynebacterium diphtheriae Transcriptome sequencingRNA-SeqTranscription start sitePromoterDtxRDiphtheria toxin
Erscheinungsjahr
2018
Zeitschriftentitel
BMC Genomics
Band
19
Ausgabe
1
Art.-Nr.
82
ISSN
1471-2164
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2917296

Zitieren

Wittchen M, Busche T, Gaspar AH, et al. Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation. BMC Genomics. 2018;19(1): 82.
Wittchen, M., Busche, T., Gaspar, A. H., Lee, J. H., Ton-That, H., Kalinowski, J., & Tauch, A. (2018). Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation. BMC Genomics, 19(1), 82. doi:10.1186/s12864-018-4481-8
Wittchen, Manuel, Busche, Tobias, Gaspar, Andrew H., Lee, Ju Huck, Ton-That, Hung, Kalinowski, Jörn, and Tauch, Andreas. 2018. “Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation”. BMC Genomics 19 (1): 82.
Wittchen, M., Busche, T., Gaspar, A. H., Lee, J. H., Ton-That, H., Kalinowski, J., and Tauch, A. (2018). Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation. BMC Genomics 19:82.
Wittchen, M., et al., 2018. Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation. BMC Genomics, 19(1): 82.
M. Wittchen, et al., “Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation”, BMC Genomics, vol. 19, 2018, : 82.
Wittchen, M., Busche, T., Gaspar, A.H., Lee, J.H., Ton-That, H., Kalinowski, J., Tauch, A.: Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation. BMC Genomics. 19, : 82 (2018).
Wittchen, Manuel, Busche, Tobias, Gaspar, Andrew H., Lee, Ju Huck, Ton-That, Hung, Kalinowski, Jörn, and Tauch, Andreas. “Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation”. BMC Genomics 19.1 (2018): 82.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:56Z
MD5 Prüfsumme
af71a032e895e7bd80ec6e966deba7f9


Link(s) zu Volltext(en)
Access Level
OA Open Access

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16.
Arenas-López C, Locker J, Orol D, Walter F, Busche T, Kalinowski J, Minton NP, Kovács K, Winzer K., Biotechnol Biofuels 12(), 2019
PMID: 31236137
Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032.
Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M., Front Microbiol 9(), 2018
PMID: 30687273

82 References

Daten bereitgestellt von Europe PubMed Central.

The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129.
Cerdeno-Tarraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, De Zoysa A, Chillingworth T, Cronin A, Dowd L, Feltwell T, Hamlin N, Holroyd S, Jagels K, Moule S, Quail MA, Rabbinowitsch E, Rutherford KM, Thomson NR, Unwin L, Whitehead S, Barrell BG, Parkhill J., Nucleic Acids Res. 31(22), 2003
PMID: 14602910
Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia.
Trost E, Blom J, Soares Sde C, Huang IH, Al-Dilaimi A, Schroder J, Jaenicke S, Dorella FA, Rocha FS, Miyoshi A, Azevedo V, Schneider MP, Silva A, Camello TC, Sabbadini PS, Santos CS, Santos LS, Hirata R Jr, Mattos-Guaraldi AL, Efstratiou A, Schmitt MP, Ton-That H, Tauch A., J. Bacteriol. 194(12), 2012
PMID: 22505676
A role for the DtxR family of metalloregulators in gram-positive pathogenesis.
Merchant AT, Spatafora GA., Mol Oral Microbiol 29(1), 2013
PMID: 24034418
X-ray grade crystals of the enzymatic fragment of diphtheria toxin.
Kantardjieff K, Collier RJ, Eisenberg D., J. Biol. Chem. 264(18), 1989
PMID: 2732229
The crystal structure of diphtheria toxin.
Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D., Nature 357(6375), 1992
PMID: 1589020
Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes.
Hoch DH, Romero-Mira M, Ehrlich BE, Finkelstein A, DasGupta BR, Simpson LL., Proc. Natl. Acad. Sci. U.S.A. 82(6), 1985
PMID: 3856850
Assembly of pili on the surface of Corynebacterium diphtheriae.
Ton-That H, Schneewind O., Mol. Microbiol. 50(4), 2003
PMID: 14622427
Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells.
Mandlik A, Swierczynski A, Das A, Ton-That H., Mol. Microbiol. 64(1), 2007
PMID: 17376076
Pilus gene pool variation and the virulence of Corynebacterium diphtheriae clinical isolates during infection of a nematode.
Broadway MM, Rogers EA, Chang C, Huang IH, Dwivedi P, Yildirim S, Schmitt MP, Das A, Ton-That H., J. Bacteriol. 195(16), 2013
PMID: 23772071
A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium Actinomyces oris.
Reardon-Robinson ME, Osipiuk J, Chang C, Wu C, Jooya N, Joachimiak A, Das A, Ton-That H., J. Biol. Chem. 290(35), 2015
PMID: 26170452
Iron, DtxR, and the regulation of diphtheria toxin expression.
Tao X, Schiering N, Zeng HY, Ringe D, Murphy JR., Mol. Microbiol. 14(2), 1994
PMID: 7830565
Analysis of the diphtheria tox promoter by site-directed mutagenesis.
Boyd J, Murphy JR., J. Bacteriol. 170(12), 1988
PMID: 3142864
The real-time polymerase chain reaction.
Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A, Zoric N., Mol. Aspects Med. 27(2-3), 2006
PMID: 16460794
On beyond classic RACE (rapid amplification of cDNA ends).
Frohman MA., PCR Methods Appl. 4(1), 1994
PMID: 9018326
A multivariate prediction model for microarray cross-hybridization.
Chen YA, Chou CC, Lu X, Slate EH, Peck K, Xu W, Voit EO, Almeida JS., BMC Bioinformatics 7(), 2006
PMID: 16509965
Mapping and quantifying mammalian transcriptomes by RNA-Seq.
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B., Nat. Methods 5(7), 2008
PMID: 18516045
RNA-Seq: a revolutionary tool for transcriptomics.
Wang Z, Gerstein M, Snyder M., Nat. Rev. Genet. 10(1), 2009
PMID: 19015660

AUTHOR UNKNOWN, 0
Annotating genomes with massive-scale RNA sequencing.
Denoeud F, Aury JM, Da Silva C, Noel B, Rogier O, Delledonne M, Morgante M, Valle G, Wincker P, Scarpelli C, Jaillon O, Artiguenave F., Genome Biol. 9(12), 2008
PMID: 19087247
Genome-wide detection of novel regulatory RNAs in E. coli.
Raghavan R, Groisman EA, Ochman H., Genome Res. 21(9), 2011
PMID: 21665928
The primary transcriptome of the major human pathogen Helicobacter pylori.
Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, Stadler PF, Vogel J., Nature 464(7286), 2010
PMID: 20164839
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi.
Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, Assefa SA, He M, Croucher NJ, Pickard DJ, Maskell DJ, Parkhill J, Choudhary J, Thomson NR, Dougan G., PLoS Genet. 5(7), 2009
PMID: 19609351
DOOR: a database for prokaryotic operons.
Mao F, Dam P, Chou J, Olman V, Xu Y., Nucleic Acids Res. 37(Database issue), 2008
PMID: 18988623
RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond.
Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D, Muniz-Rascado L, Garcia-Sotelo JS, Alquicira-Hernandez K, Martinez-Flores I, Pannier L, Castro-Mondragon JA, Medina-Rivera A, Solano-Lira H, Bonavides-Martinez C, Perez-Rueda E, Alquicira-Hernandez S, Porron-Sotelo L, Lopez-Fuentes A, Hernandez-Koutoucheva A, Del Moral-Chavez V, Rinaldi F, Collado-Vides J., Nucleic Acids Res. 44(D1), 2015
PMID: 26527724

AUTHOR UNKNOWN, 0
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
The Sequence Alignment/Map format and SAMtools.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup., Bioinformatics 25(16), 2009
PMID: 19505943
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Unipro UGENE: a unified bioinformatics toolkit.
Okonechnikov K, Golosova O, Fursov M; UGENE team, Varlamov A, Vaskin Y, Efremov I, Grehov G, Kandrov D, Rasputin K, Syabro M, Tleukenov T., Bioinformatics 28(8), 2012
PMID: 22368248
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Protein database searches using compositionally adjusted substitution matrices.
Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer AA, Yu YK., FEBS J. 272(20), 2005
PMID: 16218944
Rfam 12.0: updates to the RNA families database.
Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, Finn RD., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25392425
Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR.
Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE., Science 305(5691), 2004
PMID: 15375261
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120

AUTHOR UNKNOWN, 0
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Love MI, Huber W, Anders S., Genome Biol. 15(12), 2014
PMID: 25516281
Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq.
Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W, Huang X, Han B., Genome Res. 20(9), 2010
PMID: 20627892

AUTHOR UNKNOWN, 0
Promoters of Corynebacterium glutamicum.
Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G., J. Biotechnol. 104(1-3), 2003
PMID: 12948648
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Regulation of bacterial gene expression by riboswitches.
Winkler WC, Breaker RR., Annu. Rev. Microbiol. 59(), 2005
PMID: 16153177

AUTHOR UNKNOWN, 0
Infernal 1.1: 100-fold faster RNA homology searches.
Nawrocki EP, Eddy SR., Bioinformatics 29(22), 2013
PMID: 24008419
In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2).
Bertram R, Schlicht M, Mahr K, Nothaft H, Saier MH Jr, Titgemeyer F., J. Bacteriol. 186(5), 2004
PMID: 14973030
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes.
Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, Breaker RR., Genome Biol. 11(3), 2010
PMID: 20230605
Attenuation in amino acid biosynthetic operons.
Kolter R, Yanofsky C., Annu. Rev. Genet. 16(), 1982
PMID: 6186194
Human foamy virus genome possesses an internal, Bel-1-dependent and functional promoter.
Lochelt M, Muranyi W, Flugel RM., Proc. Natl. Acad. Sci. U.S.A. 90(15), 1993
PMID: 8394017
Prominent use of distal 5' transcription start sites and discovery of a large number of additional exons in ENCODE regions.
Denoeud F, Kapranov P, Ucla C, Frankish A, Castelo R, Drenkow J, Lagarde J, Alioto T, Manzano C, Chrast J, Dike S, Wyss C, Henrichsen CN, Holroyd N, Dickson MC, Taylor R, Hance Z, Foissac S, Myers RM, Rogers J, Hubbard T, Harrow J, Guigo R, Gingeras TR, Antonarakis SE, Reymond A., Genome Res. 17(6), 2007
PMID: 17567994
DOOR 2.0: presenting operons and their functions through dynamic and integrated views.
Mao X, Ma Q, Zhou C, Chen X, Zhang H, Yang J, Mao F, Lai W, Xu Y., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24214966

Baron S., 1996
Refined structure of dimeric diphtheria toxin at 2.0 A resolution.
Bennett MJ, Choe S, Eisenberg D., Protein Sci. 3(9), 1994
PMID: 7833807
Structure of the isolated catalytic domain of diphtheria toxin.
Weiss MS, Blanke SR, Collier RJ, Eisenberg D., Biochemistry 34(3), 1995
PMID: 7827036
Essential lysine residues within transmembrane helix 1 of diphtheria toxin facilitate COPI binding and catalytic domain entry.
Trujillo C, Taylor-Parker J, Harrison R, Murphy JR., Mol. Microbiol. 76(4), 2010
PMID: 20398220
Diphtheria toxin promoter function in Corynebacterium diphtheriae and Escherichia coli.
Kaczorek M, Zettlmeissl G, Delpeyroux F, Streeck RE., Nucleic Acids Res. 13(9), 1985
PMID: 3923442
Bacterial antisense RNAs: how many are there, and what are they doing?
Thomason MK, Storz G., Annu. Rev. Genet. 44(), 2010
PMID: 20707673
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29370758
PubMed | Europe PMC

Suchen in

Google Scholar