RNAseq analysis of alpha-proteobacterium Gluconobacter oxydans 621H

Kranz A, Busche T, Vogel A, Usadel B, Kalinowski J, Bott M, Polen T (2018)
BMC GENOMICS 19(1): 17.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kranz, Angela; Busche, TobiasUniBi; Vogel, Alexander; Usadel, Bjoern; Kalinowski, JörnUniBi; Bott, Michael; Polen, Tino
Abstract / Bemerkung
Background: The acetic acid bacterium Gluconobacter oxydans 621H is characterized by its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. The metabolism of this alpha-proteobacterium has been characterized to some extent, yet little is known about its transcriptomes and related data. In this study, we applied two different RNAseq approaches. Primary transcriptomes enriched for 5'-ends of transcripts were sequenced to detect transcription start sites, which allow subsequent analysis of promoter motifs, ribosome binding sites, and 5 '-UTRs. Whole transcriptomes were sequenced to identify expressed genes and operon structures. Results: Sequencing of primary transcriptomes of G. oxydans revealed 2449 TSSs, which were classified according to their genomic context followed by identification of promoter and ribosome binding site motifs, analysis of 5 '-UTRs including validation of predicted cis-regulatory elements and correction of start codons. 1144 (41%) of all genes were found to be expressed monocistronically, whereas 1634 genes were organized in 571 operons. Together, TSSs and whole transcriptome data were also used to identify novel intergenic (18), intragenic (328), and antisense transcripts (313). Conclusions: This study provides deep insights into the transcriptional landscapes of G. oxydans. The comprehensive transcriptome data, which we made publicly available, facilitate further analysis of promoters and other regulatory elements. This will support future approaches for rational strain development and targeted gene expression in G. oxydans. The corrections of start codons further improve the high quality genome reference and support future proteome analysis.
Stichworte
Transcriptome; RNAseq; Transcription start site; Operons; Antisense; transcripts; Gluconobacter oxydans
Erscheinungsjahr
2018
Zeitschriftentitel
BMC GENOMICS
Band
19
Ausgabe
1
Art.-Nr.
17
ISSN
1471-2164
Page URI
https://pub.uni-bielefeld.de/record/2917042

Zitieren

Kranz A, Busche T, Vogel A, et al. RNAseq analysis of alpha-proteobacterium Gluconobacter oxydans 621H. BMC GENOMICS. 2018;19(1): 17.
Kranz, A., Busche, T., Vogel, A., Usadel, B., Kalinowski, J., Bott, M., & Polen, T. (2018). RNAseq analysis of alpha-proteobacterium Gluconobacter oxydans 621H. BMC GENOMICS, 19(1), 17. doi:10.1186/s12864-017-4415-x
Kranz, Angela, Busche, Tobias, Vogel, Alexander, Usadel, Bjoern, Kalinowski, Jörn, Bott, Michael, and Polen, Tino. 2018. “RNAseq analysis of alpha-proteobacterium Gluconobacter oxydans 621H”. BMC GENOMICS 19 (1): 17.
Kranz, A., Busche, T., Vogel, A., Usadel, B., Kalinowski, J., Bott, M., and Polen, T. (2018). RNAseq analysis of alpha-proteobacterium Gluconobacter oxydans 621H. BMC GENOMICS 19:17.
Kranz, A., et al., 2018. RNAseq analysis of alpha-proteobacterium Gluconobacter oxydans 621H. BMC GENOMICS, 19(1): 17.
A. Kranz, et al., “RNAseq analysis of alpha-proteobacterium Gluconobacter oxydans 621H”, BMC GENOMICS, vol. 19, 2018, : 17.
Kranz, A., Busche, T., Vogel, A., Usadel, B., Kalinowski, J., Bott, M., Polen, T.: RNAseq analysis of alpha-proteobacterium Gluconobacter oxydans 621H. BMC GENOMICS. 19, : 17 (2018).
Kranz, Angela, Busche, Tobias, Vogel, Alexander, Usadel, Bjoern, Kalinowski, Jörn, Bott, Michael, and Polen, Tino. “RNAseq analysis of alpha-proteobacterium Gluconobacter oxydans 621H”. BMC GENOMICS 19.1 (2018): 17.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032.
Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M., Front Microbiol 9(), 2018
PMID: 30687273
Global mRNA decay and 23S rRNA fragmentation in Gluconobacter oxydans 621H.
Kranz A, Steinmann A, Degner U, Mengus-Kaya A, Matamouros S, Bott M, Polen T., BMC Genomics 19(1), 2018
PMID: 30326828

95 References

Daten bereitgestellt von Europe PubMed Central.

The use of microorganisms in L-ascorbic acid production.
Bremus C, Herrmann U, Bringer-Meyer S, Sahm H., J. Biotechnol. 124(1), 2006
PMID: 16516325
Gluconobacter oxydans: its biotechnological applications.
Gupta A, Singh VK, Qazi GN, Kumar A., J. Mol. Microbiol. Biotechnol. 3(3), 2001
PMID: 11361077
Industrial production of L-ascorbic acid (vitamin C) and D-Isoascorbic acid
Pappenberger G, Hohmann H-P., 2014
Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain
Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M., 1997
Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation.
Wang EX, Ding MZ, Ma Q, Dong XT, Yuan YJ., Microb. Cell Fact. 15(), 2016
PMID: 26809519
Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
Herrmann U, Merfort M, Jeude M, Bringer-Meyer S, Sahm H., Appl. Microbiol. Biotechnol. 64(1), 2003
PMID: 14564486
Improving the performance of cell biocatalysis and the productivity of xylonic acid using a compressed oxygen supply
Zhou X, Lü S, Xu Y, Mo Y, Yu S., 2015
Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans.
Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U., Nat. Biotechnol. 23(2), 2005
PMID: 15665824

AUTHOR UNKNOWN, 0
Biochemistry and biotechnological applications of Gluconobacter strains.
Deppenmeier U, Hoffmeister M, Prust C., Appl. Microbiol. Biotechnol. 60(3), 2002
PMID: 12436304
Respiratory chains and bioenergetics of acetic acid bacteria.
Matsushita K, Toyama H, Adachi O., Adv. Microb. Physiol. 36(), 1994
PMID: 7942316
Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H.
Hanke T, Noh K, Noack S, Polen T, Bringer S, Sahm H, Wiechert W, Bott M., Appl. Environ. Microbiol. 79(7), 2013
PMID: 23377928
Evidence for a key role of cytochrome bo3 oxidase in respiratory energy metabolism of Gluconobacter oxydans.
Richhardt J, Luchterhand B, Bringer S, Buchs J, Bott M., J. Bacteriol. 195(18), 2013
PMID: 23852873

Bringer S, Bott M., 2016
The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504.
Kostner D, Luchterhand B, Junker A, Volland S, Daniel R, Buchs J, Liebl W, Ehrenreich A., Appl. Microbiol. Biotechnol. 99(1), 2014
PMID: 25267158
Metabolic engineering of Gluconobacter oxydans 621H for increased biomass yield.
Kiefler I, Bringer S, Bott M., Appl. Microbiol. Biotechnol. 101(13), 2017
PMID: 28484812
Construction of expression vectors for protein production in Gluconobacter oxydans.
Kallnik V, Meyer M, Deppenmeier U, Schweiger P., J. Biotechnol. 150(4), 2010
PMID: 20969898
High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans.
Merfort M, Herrmann U, Bringer-Meyer S, Sahm H., Appl. Microbiol. Biotechnol. 73(2), 2006
PMID: 16820953
Characterization of membrane-bound dehydrogenases of Gluconobacter oxydans 621H using a new system for their functional expression.
Mientus M, Kostner D, Peters B, Liebl W, Ehrenreich A., Appl. Microbiol. Biotechnol. 101(8), 2017
PMID: 28064365
Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans.
Shi L, Li K, Zhang H, Liu X, Lin J, Wei D., J. Biotechnol. 175(), 2014
PMID: 24530540
Analytics for Metabolic Engineering.
Petzold CJ, Chan LJ, Nhan M, Adams PD., Front Bioeng Biotechnol 3(), 2015
PMID: 26442249
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
Bacterial antisense RNAs: how many are there, and what are they doing?
Thomason MK, Storz G., Annu. Rev. Genet. 44(), 2010
PMID: 20707673
RNA-Seq: a revolutionary tool for transcriptomics.
Wang Z, Gerstein M, Snyder M., Nat. Rev. Genet. 10(1), 2009
PMID: 19015660
The identification and characterization of novel transcripts from RNA-seq data.
Weirick T, Militello G, Muller R, John D, Dimmeler S, Uchida S., Brief. Bioinformatics 17(4), 2015
PMID: 26283677
Operons.
Osbourn AE, Field B., Cell. Mol. Life Sci. 66(23), 2009
PMID: 19662496
The life-cycle of operons.
Price MN, Arkin AP, Alm EJ., PLoS Genet. 2(6), 2006
PMID: 16789824
Connected gene neighborhoods in prokaryotic genomes.
Rogozin IB, Makarova KS, Murvai J, Czabarka E, Wolf YI, Tatusov RL, Szekely LA, Koonin EV., Nucleic Acids Res. 30(10), 2002
PMID: 12000841
The primary transcriptome of the major human pathogen Helicobacter pylori.
Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, Stadler PF, Vogel J., Nature 464(7286), 2010
PMID: 20164839

AUTHOR UNKNOWN, 0
Comparative transcriptomics across the prokaryotic tree of life.
Cohen O, Doron S, Wurtzel O, Dar D, Edelheit S, Karunker I, Mick E, Sorek R., Nucleic Acids Res. 44(W1), 2016
PMID: 27154273
Progress in prokaryotic transcriptomics.
Filiatrault MJ., Curr. Opin. Microbiol. 14(5), 2011
PMID: 21839669
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L., Nat. Biotechnol. 28(5), 2010
PMID: 20436464
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR.
Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE., Science 305(5691), 2004
PMID: 15375261
Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation.
Cuklina J, Hahn J, Imakaev M, Omasits U, Forstner KU, Ljubimov N, Goebel M, Pessi G, Fischer HM, Ahrens CH, Gelfand MS, Evguenieva-Hackenberg E., BMC Genomics 17(), 2016
PMID: 27107716
The Rhizobium etli sigma70 (SigA) factor recognizes a lax consensus promoter.
Ramirez-Romero MA, Masulis I, Cevallos MA, Gonzalez V, Davila G., Nucleic Acids Res. 34(5), 2006
PMID: 16528104
Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021.
Schluter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A., BMC Genomics 14(), 2013
PMID: 23497287
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120
Rfam 12.0: updates to the RNA families database.
Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, Finn RD., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25392425
Update on RefSeq microbial genomes resources.
Tatusova T, Ciufo S, Federhen S, Fedorov B, McVeigh R, O'Neill K, Tolstoy I, Zaslavsky L., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25510495
JBrowse: a next-generation genome browser.
Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH., Genome Res. 19(9), 2009
PMID: 19570905
Comprehensive transcriptome and improved genome annotation of Bacillus licheniformis WX-02.
Guo J, Cheng G, Gou XY, Xing F, Li S, Han YC, Wang L, Song JM, Shu CC, Chen SW, Chen LL., FEBS Lett. 589(18), 2015
PMID: 26226425
Temperature-dependent global gene expression in the Antarctic archaeon Methanococcoides burtonii.
Campanaro S, Williams TJ, Burg DW, De Francisci D, Treu L, Lauro FM, Cavicchioli R., Environ. Microbiol. 13(8), 2010
PMID: 21059163
Single TRAM domain RNA-binding proteins in Archaea: functional insight from Ctr3 from the Antarctic methanogen Methanococcoides burtonii.
Taha , Siddiqui KS, Campanaro S, Najnin T, Deshpande N, Williams TJ, Aldrich-Wright J, Wilkins M, Curmi PM, Cavicchioli R., Environ. Microbiol. 18(9), 2016
PMID: 26769275
The Listeria transcriptional landscape from saprophytism to virulence.
Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Regnault B, Coppee JY, Lecuit M, Johansson J, Cossart P., Nature 459(7249), 2009
PMID: 19448609
A high resolution map of a cyanobacterial transcriptome.
Vijayan V, Jain IH, O'Shea EK., Genome Biol. 12(5), 2011
PMID: 21612627
A single-base resolution map of an archaeal transcriptome.
Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R., Genome Res. 20(1), 2009
PMID: 19884261
Transcriptome complexity in a genome-reduced bacterium.
Guell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kuhner S, Rode M, Suyama M, Schmidt S, Gavin AC, Bork P, Serrano L., Science 326(5957), 2009
PMID: 19965477
Prevalence of transcription promoters within archaeal operons and coding sequences.
Koide T, Reiss DJ, Bare JC, Pang WL, Facciotti MT, Schmid AK, Pan M, Marzolf B, Van PT, Lo FY, Pratap A, Deutsch EW, Peterson A, Martin D, Baliga NS., Mol. Syst. Biol. 5(), 2009
PMID: 19536208
RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti.
de Groot A, Roche D, Fernandez B, Ludanyi M, Cruveiller S, Pignol D, Vallenet D, Armengaud J, Blanchard L., Genome Biol Evol 6(4), 2014
PMID: 24723731
Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5'-terminal AUG.
Brock JE, Pourshahian S, Giliberti J, Limbach PA, Janssen GR., RNA 14(10), 2008
PMID: 18755843
Leaderless Transcripts and Small Proteins Are Common Features of the Mycobacterial Translational Landscape.
Shell SS, Wang J, Lapierre P, Mir M, Chase MR, Pyle MM, Gawande R, Ahmad R, Sarracino DA, Ioerger TR, Fortune SM, Derbyshire KM, Wade JT, Gray TA., PLoS Genet. 11(11), 2015
PMID: 26536359
Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation.
Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS., Nucleic Acids Res. 30(14), 2002
PMID: 12136096
Riboswitch control of Rho-dependent transcription termination.
Hollands K, Proshkin S, Sklyarova S, Epshtein V, Mironov A, Nudler E, Groisman EA., Proc. Natl. Acad. Sci. U.S.A. 109(14), 2012
PMID: 22431636
Genome-wide detection of novel regulatory RNAs in E. coli.
Raghavan R, Groisman EA, Ochman H., Genome Res. 21(9), 2011
PMID: 21665928
Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria.
Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ, Puskarz I, Mandal M, Rudnick ND, Breaker RR., Genome Biol. 6(8), 2005
PMID: 16086852
Computational prediction of regulatory, premature transcription termination in bacteria.
Millman A, Dar D, Shamir M, Sorek R., Nucleic Acids Res. 45(2), 2016
PMID: 27574119
Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms.
Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS., J. Biol. Chem. 277(50), 2002
PMID: 12376536
Metabolite-binding RNA domains are present in the genes of eukaryotes.
Sudarsan N, Barrick JE, Breaker RR., RNA 9(6), 2003
PMID: 12756322
Regulation of noise in the expression of a single gene.
Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A., Nat. Genet. 31(1), 2002
PMID: 11967532
Compilation and analysis of Escherichia coli promoter DNA sequences.
Hawley DK, McClure WR., Nucleic Acids Res. 11(8), 1983
PMID: 6344016
The regulation of bacterial transcription initiation.
Browning DF, Busby SJ., Nat. Rev. Microbiol. 2(1), 2004
PMID: 15035009
The sigma70 family of sigma factors.
Paget MS, Helmann JD., Genome Biol. 4(1), 2003
PMID: 12540296
The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family.
Staron A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T., Mol. Microbiol. 74(3), 2009
PMID: 19737356
An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803.
Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voss B, Steglich C, Wilde A, Vogel J, Hess WR., Proc. Natl. Acad. Sci. U.S.A. 108(5), 2011
PMID: 21245330
Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120.
Mitschke J, Vioque A, Haas F, Hess WR, Muro-Pastor AM., Proc. Natl. Acad. Sci. U.S.A. 108(50), 2011
PMID: 22135468
Prominent use of distal 5' transcription start sites and discovery of a large number of additional exons in ENCODE regions.
Denoeud F, Kapranov P, Ucla C, Frankish A, Castelo R, Drenkow J, Lagarde J, Alioto T, Manzano C, Chrast J, Dike S, Wyss C, Henrichsen CN, Holroyd N, Dickson MC, Taylor R, Hance Z, Foissac S, Myers RM, Rogers J, Hubbard T, Harrow J, Guigo R, Gingeras TR, Antonarakis SE, Reymond A., Genome Res. 17(6), 2007
PMID: 17567994
The excludon: a new concept in bacterial antisense RNA-mediated gene regulation.
Sesto N, Wurtzel O, Archambaud C, Sorek R, Cossart P., Nat. Rev. Microbiol. 11(2), 2012
PMID: 23268228
The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium.
Kroger C, Dillon SC, Cameron AD, Papenfort K, Sivasankaran SK, Hokamp K, Chao Y, Sittka A, Hebrard M, Handler K, Colgan A, Leekitcharoenphon P, Langridge GC, Lohan AJ, Loftus B, Lucchini S, Ussery DW, Dorman CJ, Thomson NR, Vogel J, Hinton JC., Proc. Natl. Acad. Sci. U.S.A. 109(20), 2012
PMID: 22538806
Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli.
Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L, Taboada B, Jimenez-Jacinto V, Salgado H, Juarez K, Contreras-Moreira B, Huerta AM, Collado-Vides J, Morett E., PLoS ONE 4(10), 2009
PMID: 19838305
Studying transcription initiation by RNA polymerase with diffusion-based single-molecule fluorescence.
Alhadid Y, Chung S, Lerner E, Taatjes DJ, Borukhov S, Weiss S., Protein Sci. 26(7), 2017
PMID: 28370550

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29304737
PubMed | Europe PMC

Suchen in

Google Scholar