Peroxiredoxins and Redox Signaling in Plants

Liebthal M, Maynard D, Dietz K-J (2018)
Antioxidants & Redox Signaling 28(7): 609-624.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2018
Zeitschriftentitel
Antioxidants & Redox Signaling
Band
28
Ausgabe
7
Seite(n)
609-624
ISSN
1523-0864, 1557-7716
Page URI
https://pub.uni-bielefeld.de/record/2916930

Zitieren

Liebthal M, Maynard D, Dietz K-J. Peroxiredoxins and Redox Signaling in Plants. Antioxidants & Redox Signaling. 2018;28(7):609-624.
Liebthal, M., Maynard, D., & Dietz, K. - J. (2018). Peroxiredoxins and Redox Signaling in Plants. Antioxidants & Redox Signaling, 28(7), 609-624. https://doi.org/10.1089/ars.2017.7164
Liebthal, Michael, Maynard, Daniel, and Dietz, Karl-Josef. 2018. “Peroxiredoxins and Redox Signaling in Plants”. Antioxidants & Redox Signaling 28 (7): 609-624.
Liebthal, M., Maynard, D., and Dietz, K. - J. (2018). Peroxiredoxins and Redox Signaling in Plants. Antioxidants & Redox Signaling 28, 609-624.
Liebthal, M., Maynard, D., & Dietz, K.-J., 2018. Peroxiredoxins and Redox Signaling in Plants. Antioxidants & Redox Signaling, 28(7), p 609-624.
M. Liebthal, D. Maynard, and K.-J. Dietz, “Peroxiredoxins and Redox Signaling in Plants”, Antioxidants & Redox Signaling, vol. 28, 2018, pp. 609-624.
Liebthal, M., Maynard, D., Dietz, K.-J.: Peroxiredoxins and Redox Signaling in Plants. Antioxidants & Redox Signaling. 28, 609-624 (2018).
Liebthal, Michael, Maynard, Daniel, and Dietz, Karl-Josef. “Peroxiredoxins and Redox Signaling in Plants”. Antioxidants & Redox Signaling 28.7 (2018): 609-624.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Volatiles of rhizobacteria Serratia and Stenotrophomonas alter growth and metabolite composition of Arabidopsis thaliana.
Wenke K, Kopka J, Schwachtje J, van Dongen JT, Piechulla B., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 30030887
Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors.
Shapiguzov A, Vainonen JP, Hunter K, Tossavainen H, Tiwari A, Järvi S, Hellman M, Aarabi F, Alseekh S, Wybouw B, Van Der Kelen K, Nikkanen L, Krasensky-Wrzaczek J, Sipari N, Keinänen M, Tyystjärvi E, Rintamäki E, De Rybel B, Salojärvi J, Van Breusegem F, Fernie AR, Brosché M, Permi P, Aro EM, Wrzaczek M, Kangasjärvi J., Elife 8(), 2019
PMID: 30767893
Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness.
Cejudo FJ, Ojeda V, Delgado-Requerey V, González M, Pérez-Ruiz JM., Front Plant Sci 10(), 2019
PMID: 31019520
The Role of the Plant Antioxidant System in Drought Tolerance.
Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ., Antioxidants (Basel) 8(4), 2019
PMID: 30965652
Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks.
Černý M, Habánová H, Berka M, Luklová M, Brzobohatý B., Int J Mol Sci 19(9), 2018
PMID: 30231521
Crystal structure of Arabidopsis thaliana peroxiredoxin A C119S mutant.
Yang Y, Cai W, Wang J, Pan W, Liu L, Wang M, Zhang M., Acta Crystallogr F Struct Biol Commun 74(pt 10), 2018
PMID: 30279313
Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation.
Dreyer A, Dietz KJ., Antioxidants (Basel) 7(11), 2018
PMID: 30469375

127 References

Daten bereitgestellt von Europe PubMed Central.

Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
The role of phosphatidic acid in the regulation of the Ras/MEK/Erk signaling cascade.
Andresen BT, Rizzo MA, Shome K, Romero G., FEBS Lett. 531(1), 2002
PMID: 12401205

AUTHOR UNKNOWN, 0
Enzyme regulation: a thiol switch opens the gate.
Antelmann H., Nat. Chem. Biol. 11(1), 2014
PMID: 25383756
Thiol-based redox switches and gene regulation.
Antelmann H, Helmann JD., Antioxid. Redox Signal. 14(6), 2010
PMID: 20626317
ATTED-II in 2016: A Plant Coexpression Database Towards Lineage-Specific Coexpression.
Aoki Y, Okamura Y, Tadaka S, Kinoshita K, Obayashi T., Plant Cell Physiol. 57(1), 2015
PMID: 26546318
Protein S-nitrosylation: what's going on in plants?
Astier J, Kulik A, Koen E, Besson-Bard A, Bourque S, Jeandroz S, Lamotte O, Wendehenne D., Free Radic. Biol. Med. 53(5), 2012
PMID: 22750205
Protein oxidation and proteolysis.
Bader N, Grune T., Biol. Chem. 387(10-11), 2006
PMID: 17081106
Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o.
Barranco-Medina S, Krell T, Bernier-Villamor L, Sevilla F, Lazaro JJ, Dietz KJ., J. Exp. Bot. 59(12), 2008
PMID: 18632730
Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro.
Bedhomme M, Adamo M, Marchand CH, Couturier J, Rouhier N, Lemaire SD, Zaffagnini M, Trost P., Biochem. J. 445(3), 2012
PMID: 22607208
Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxin x.
Bernal-Bayard P, Ojeda V, Hervas M, Cejudo FJ, Navarro JA, Velazquez-Campoy A, Perez-Ruiz JM., FEBS Lett. 588(23), 2014
PMID: 25448674
ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
Biteau B, Labarre J, Toledano MB., Nature 425(6961), 2003
PMID: 14586471
Amphitropic proteins: a new class of membrane proteins.
Burn P., Trends Biochem. Sci. 13(3), 1988
PMID: 3245067
The Rice Oligonucleotide Array Database: an atlas of rice gene expression.
Cao P, Jung KH, Choi D, Hwang D, Zhu J, Ronald PC., Rice (N Y) 5(1), 2012
PMID: 24279809
Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome.
Cerveau D, Kraut A, Stotz HU, Mueller MJ, Coute Y, Rey P., Plant Sci. 252(), 2016
PMID: 27717466
Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status.
Cerveau D, Ouahrani D, Marok MA, Blanchard L, Rey P., Plant Cell Environ. 39(1), 2015
PMID: 26138759
Thioredoxin-dependent peroxide reductase from yeast.
Chae HZ, Chung SJ, Rhee SG., J. Biol. Chem. 269(44), 1994
PMID: 7961686
Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells.
Cho CS, Yoon HJ, Kim JY, Woo HA, Rhee SG., Proc. Natl. Acad. Sci. U.S.A. 111(33), 2014
PMID: 25092340
The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity.
Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Miginiac-Maslow M., J. Biol. Chem. 278(26), 2003
PMID: 12707279
A chloroplast light-regulated oxidative sensor for moderate light intensity in Arabidopsis.
Dangoor I, Peled-Zehavi H, Wittenberg G, Danon A., Plant Cell 24(5), 2012
PMID: 22570442
Dual action of the active oxygen species during plant stress responses.
Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F., Cell. Mol. Life Sci. 57(5), 2000
PMID: 10892343
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
Mapping the Arabidopsis organelle proteome.
Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS., Proc. Natl. Acad. Sci. U.S.A. 103(17), 2006
PMID: 16618929
Peroxiredoxins are conserved markers of circadian rhythms.
Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA, Maywood ES, Hastings MH, Baliga NS, Merrow M, Millar AJ, Johnson CH, Kyriacou CP, O'Neill JS, Reddy AB., Nature 485(7399), 2012
PMID: 22622569
ACHT4-driven oxidation of APS1 attenuates starch synthesis under low light intensity in Arabidopsis plants.
Eliyahu E, Rog I, Inbal D, Danon A., Proc. Natl. Acad. Sci. U.S.A. 112(41), 2015
PMID: 26424450
Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation.
Engelman R, Weisman-Shomer P, Ziv T, Xu J, Arner ES, Benhar M., J. Biol. Chem. 288(16), 2013
PMID: 23479738
S-Nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana.
Espunya MC, De Michele R, Gomez-Cadenas A, Martinez MC., J. Exp. Bot. 63(8), 2012
PMID: 22371078
Factors affecting protein thiol reactivity and specificity in peroxide reduction.
Ferrer-Sueta G, Manta B, Botti H, Radi R, Trujillo M, Denicola A., Chem. Res. Toxicol. 24(4), 2011
PMID: 21391663
Ascorbate and glutathione: the heart of the redox hub.
Foyer CH, Noctor G., Plant Physiol. 155(1), 2011
PMID: 21205630
HELIQUEST: a web server to screen sequences with specific alpha-helical properties.
Gautier R, Douguet D, Antonny B, Drin G., Bioinformatics 24(18), 2008
PMID: 18662927
A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase.
Gelhaye E, Rouhier N, Gerard J, Jolivet Y, Gualberto J, Navrot N, Ohlsson PI, Wingsle G, Hirasawa M, Knaff DB, Wang H, Dizengremel P, Meyer Y, Jacquot JP., Proc. Natl. Acad. Sci. U.S.A. 101(40), 2004
PMID: 15385674
Thiol-based redox switches.
Groitl B, Jakob U., Biochim. Biophys. Acta 1844(8), 2014
PMID: 24657586
Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases.
Gutscher M, Sobotta MC, Wabnitz GH, Ballikaya S, Meyer AJ, Samstag Y, Dick TP., J. Biol. Chem. 284(46), 2009
PMID: 19755417
Typical 2-Cys peroxiredoxins--structures, mechanisms and functions.
Hall A, Karplus PA, Poole LB., FEBS J. 276(9), 2009
PMID: 19476488

Heazlewood, Nucleic Acids Res 36(1), 2008
Peroxiredoxins.
Hofmann B, Hecht HJ, Flohe L., Biol. Chem. 383(3-4), 2002
PMID: 12033427
Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
Hossain MS, ElSayed AI, Moore M, Dietz KJ., J. Exp. Bot. 68(5), 2017
PMID: 28338762
Response to biotic and oxidative stress in Arabidopsis thaliana: analysis of variably phosphorylated proteins.
Huang C, Verrillo F, Renzone G, Arena S, Rocco M, Scaloni A, Marra M., J Proteomics 74(10), 2011
PMID: 21619950
The dual-targeted plant sulfiredoxin retroreduces the sulfinic form of atypical mitochondrial peroxiredoxin.
Iglesias-Baena I, Barranco-Medina S, Sevilla F, Lazaro JJ., Plant Physiol. 155(2), 2010
PMID: 21139087
Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function.
Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong GW, Yun DJ, Rhee SG, Cho MJ, Lee SY., Cell 117(5), 2004
PMID: 15163410
Amphitropic proteins: regulation by reversible membrane interactions (review).
Johnson JE, Cornell RB., Mol. Membr. Biol. 16(3), 1999
PMID: 10503244
Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace.
Jonsson TJ, Johnson LC, Lowther WT., Nature 451(7174), 2008
PMID: 18172504
The Phyre2 web portal for protein modeling, prediction and analysis.
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ., Nat Protoc 10(6), 2015
PMID: 25950237
The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux.
Konig J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, Dietz KJ., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11929977
The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone.
Konig J, Galliardt H, Jutte P, Schaper S, Dittmann L, Dietz KJ., J. Exp. Bot. 64(11), 2013
PMID: 23828546
Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure.
Konig J, Lotte K, Plessow R, Brockhinke A, Baier M, Dietz KJ., J. Biol. Chem. 278(27), 2003
PMID: 12702727
Thioredoxins in chloroplasts.
Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguet E., Curr. Genet. 51(6), 2007
PMID: 17431629
Redox-Dependent Conformational Dynamics of Decameric 2-Cysteine Peroxiredoxin and its Interaction with Cyclophilin 20-3.
Liebthal M, Struve M, Li X, Hertle Y, Maynard D, Hellweg T, Viehhauser A, Dietz KJ., Plant Cell Physiol. 57(7), 2016
PMID: 26872837
Proteomic identification of S-nitrosylated proteins in Arabidopsis.
Lindermayr C, Saalbach G, Durner J., Plant Physiol. 137(3), 2005
PMID: 15734904
Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST.
Manevich Y, Feinstein SI, Fisher AB., Proc. Natl. Acad. Sci. U.S.A. 101(11), 2004
PMID: 15004285
The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2.
Manta B, Hugo M, Ortiz C, Ferrer-Sueta G, Trujillo M, Denicola A., Arch. Biochem. Biophys. 484(2), 2008
PMID: 19061854
Membrane association of peroxiredoxin-2 in red cells is mediated by the N-terminal cytoplasmic domain of band 3.
Matte A, Bertoldi M, Mohandas N, An X, Bugatti A, Brunati AM, Rusnati M, Tibaldi E, Siciliano A, Turrini F, Perrotta S, De Franceschi L., Free Radic. Biol. Med. 55(), 2012
PMID: 23123411
Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants.
Michelet L, Zaffagnini M, Marchand C, Collin V, Decottignies P, Tsan P, Lancelin JM, Trost P, Miginiac-Maslow M, Noctor G, Lemaire SD., Proc. Natl. Acad. Sci. U.S.A. 102(45), 2005
PMID: 16263928
Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants.
Mithoe SC, Boersema PJ, Berke L, Snel B, Heck AJ, Menke FL., J. Proteome Res. 11(1), 2011
PMID: 22074104
Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C.
Monteiro G, Horta BB, Pimenta DC, Augusto O, Netto LE., Proc. Natl. Acad. Sci. U.S.A. 104(12), 2007
PMID: 17360337
Protein 7.2b of human erythrocyte membranes binds to calpromotin.
Moore RB, Shriver SK., Biochem. Biophys. Res. Commun. 232(2), 1997
PMID: 9125167
Reconstitution of Ca(2+)-dependent K+ transport in erythrocyte membrane vesicles requires a cytoplasmic protein.
Moore RB, Mankad MV, Shriver SK, Mankad VN, Plishker GA., J. Biol. Chem. 266(28), 1991
PMID: 1918011
How pH modulates the dimer-decamer interconversion of 2-Cys peroxiredoxins from the Prx1 subfamily.
Morais MA, Giuseppe PO, Souza TA, Alegria TG, Oliveira MA, Netto LE, Murakami MT., J. Biol. Chem. 290(13), 2015
PMID: 25666622
The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo.
Muthuramalingam M, Matros A, Scheibe R, Mock HP, Dietz KJ., Front Plant Sci 4(), 2013
PMID: 23516120
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants.
Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, Toyoda T, Tomita M, Ishihama Y, Shirasu K., Plant Physiol. 153(3), 2010
PMID: 20466843
Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
Nietzel T, Mostertz J, Hochgrafe F, Schwarzlander M., Mitochondrion 33(), 2016
PMID: 27456428
Glutathione in plants: an integrated overview.
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH., Plant Cell Environ. 35(2), 2011
PMID: 21777251
Protein-protein interactions within peroxiredoxin systems.
Noguera-Mazon V, Krimm I, Walker O, Lancelin JM., Photosyn. Res. 89(2-3), 2006
PMID: 17089212
In vivo parameters influencing 2-Cys Prx oligomerization: The role of enzyme sulfinylation.
Noichri Y, Palais G, Ruby V, D'Autreaux B, Delaunay-Moisan A, Nystrom T, Molin M, Toledano MB., Redox Biol 6(), 2015
PMID: 26335398
Significant enhancement of hPrx1 chaperone activity through lysine acetylation.
Pan Y, Jin JH, Yu Y, Wang J., Chembiochem 15(12), 2014
PMID: 25082442
Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis.
Park SW, Li W, Viehhauser A, He B, Kim S, Nilsson AK, Andersson MX, Kittle JD, Ambavaram MM, Luan S, Esker AR, Tholl D, Cimini D, Ellerstrom M, Coaker G, Mitchell TK, Pereira A, Dietz KJ, Lawrence CB., Proc. Natl. Acad. Sci. U.S.A. 110(23), 2013
PMID: 23671085
Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin.
Parsonage D, Youngblood DS, Sarma GN, Wood ZA, Karplus PA, Poole LB., Biochemistry 44(31), 2005
PMID: 16060667
Glutathione Is the Resolving Thiol for Thioredoxin Peroxidase Activity of 1-Cys Peroxiredoxin Without Being Consumed During the Catalytic Cycle.
Pedrajas JR, McDonagh B, Hernandez-Torres F, Miranda-Vizuete A, Gonzalez-Ojeda R, Martinez-Galisteo E, Padilla CA, Barcena JA., Antioxid. Redox Signal. 24(3), 2015
PMID: 26159064
Changes in Protein Expression and Lysine Acetylation Induced by Decreased Glutathione Levels in Astrocytes.
Pehar M, Ball LE, Sharma DR, Harlan BA, Comte-Walters S, Neely BA, Vargas MR., Mol. Cell Proteomics 15(2), 2015
PMID: 26486419
The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts.
Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ., Mol. Cell Proteomics 5(1), 2005
PMID: 16207701
Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage.
Perez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ., Plant Cell 18(9), 2006
PMID: 16891402
Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling.
Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA., Trends Biochem. Sci. 40(8), 2015
PMID: 26067716
Calcium-activated potassium transport and high molecular weight forms of calpromotin.
Plishker GA, Chevalier D, Seinsoth L, Moore RB., J. Biol. Chem. 267(30), 1992
PMID: 1400494
The basics of thiols and cysteines in redox biology and chemistry.
Poole LB., Free Radic. Biol. Med. 80(), 2014
PMID: 25433365
Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.
Pulido P, Spinola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, Gonzalez M, Cejudo FJ., J. Exp. Bot. 61(14), 2010
PMID: 20616155
Structural classification of thioredoxin-like fold proteins.
Qi Y, Grishin NV., Proteins 58(2), 2005
PMID: 15558583
Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF).
Reiland S, Finazzi G, Endler A, Willig A, Baerenfaller K, Grossmann J, Gerrits B, Rutishauser D, Gruissem W, Rochaix JD, Baginsky S., Proc. Natl. Acad. Sci. U.S.A. 108(31), 2011
PMID: 21768351
Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks.
Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S., Plant Physiol. 150(2), 2009
PMID: 19376835
Overview on Peroxiredoxin.
Rhee SG., Mol. Cells 39(1), 2016
PMID: 26831451
Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana.
Roitinger E, Hofer M, Kocher T, Pichler P, Novatchkova M, Yang J, Schlogelhofer P, Mechtler K., Mol. Cell Proteomics 14(3), 2015
PMID: 25561503
S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration.
Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M., Plant Cell 19(12), 2007
PMID: 18165327
Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis.
Rose CM, Venkateshwaran M, Volkening JD, Grimsrud PA, Maeda J, Bailey DJ, Park K, Howes-Podoll M, den Os D, Yeun LH, Westphall MS, Sussman MR, Ane JM, Coon JJ., Mol. Cell Proteomics 11(9), 2012
PMID: 22683509

AUTHOR UNKNOWN, 0
Functional complementation in yeast reveals a protective role of chloroplast 2-Cys peroxiredoxin against reactive nitrogen species.
Sakamoto A, Tsukamoto S, Yamamoto H, Ueda-Hashimoto M, Takahashi M, Suzuki H, Morikawa H., Plant J. 33(5), 2003
PMID: 12609026
ARAMEMNON, a novel database for Arabidopsis integral membrane proteins.
Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R., Plant Physiol. 131(1), 2003
PMID: 12529511
Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: Nalpha-terminal acetylation of human peroxiredoxin II.
Seo JH, Lim JC, Lee DY, Kim KS, Piszczek G, Nam HW, Kim YS, Ahn T, Yun CH, Kim K, Chock PB, Chae HZ., J. Biol. Chem. 284(20), 2009
PMID: 19286652
PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family.
Soito L, Williamson C, Knutson ST, Fetrow JS, Poole LB, Nelson KJ., Nucleic Acids Res. 39(Database issue), 2010
PMID: 21036863
The significance of cysteine synthesis for acclimation to high light conditions.
Speiser A, Haberland S, Watanabe M, Wirtz M, Dietz KJ, Saito K, Hell R., Front Plant Sci 5(), 2014
PMID: 25653656
Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana.
Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K., Sci Signal 6(270), 2013
PMID: 23572148
Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action.
Wang P, Xue L, Batelli G, Lee S, Hou YJ, Van Oosten MJ, Zhang H, Tao WA, Zhu JK., Proc. Natl. Acad. Sci. U.S.A. 110(27), 2013
PMID: 23776212
Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins.
Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG., J. Biol. Chem. 280(5), 2004
PMID: 15590625
Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins.
Wood ZA, Poole LB, Hantgan RR, Karplus PA., Biochemistry 41(17), 2002
PMID: 11969410
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling.
Wood ZA, Poole LB, Karplus PA., Science 300(5619), 2003
PMID: 12714747
Structure, mechanism and regulation of peroxiredoxins.
Wood ZA, Schroder E, Robin Harris J, Poole LB., Trends Biochem. Sci. 28(1), 2003
PMID: 12517450
Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis.
Wu XN, Sanchez Rodriguez C, Pertl-Obermeyer H, Obermeyer G, Schulze WX., Mol. Cell Proteomics 12(10), 2013
PMID: 23820729
Data for global lysine-acetylation analysis in rice (Oryza sativa).
Xiong Y, Zhang K, Cheng Z, Wang GL, Liu W., Data Brief 7(), 2016
PMID: 26977447
Involvement of protein phosphorylation in water stress-induced antioxidant defense in maize leaves.
Xu S, Ding H, Su F, Zhang A, Jiang M., J Integr Plant Biol 51(7), 2009
PMID: 19566644
P³DB 3.0: From plant phosphorylation sites to protein networks.
Yao Q, Ge H, Wu S, Zhang N, Chen W, Xu C, Gao J, Thelen JJ, Xu D., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24243849
Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth.
Zhang H, Zhou H, Berke L, Heck AJ, Mohammed S, Scheres B, Menke FL., Mol. Cell Proteomics 12(5), 2013
PMID: 23328941
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28594234
PubMed | Europe PMC

Suchen in

Google Scholar