Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum

Dostalova H, Holatko J, Busche T, Rucka L, Rapoport A, Halada P, Nesvera J, Kalinowski J, Patek M (2017)
AMB EXPRESS 7: 133.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Dostalova, Hana; Holatko, Jiri; Busche, TobiasUniBi; Rucka, Lenka; Rapoport, Andrey; Halada, Petr; Nesvera, Jan; Kalinowski, JörnUniBi; Patek, Miroslav
Abstract / Bemerkung
Corynebacterium glutamicum is an important industrial producer of various amino acids and other metabolites. The C. glutamicum genome encodes seven sigma subunits (factors) of RNA polymerase: the primary sigma factor SigA (sA), the primary-like sigma(B) and five alternative sigma factors (sigma(C), sigma(D), sigma(E), sigma(H) and sigma(M)). We have developed in vitro and in vivo methods to assign particular sigma factors to individual promoters of different classes. In vitro transcription assays and measurements of promoter activity using the overexpression of a single sigma factor gene and the transcriptional fusion of the promoter to the gfpuv reporter gene enabled us to reliably define the sigma factor dependency of promoters. To document the strengths of these methods, we tested examples of respective promoters for each C. glutamicum sigma factor. Promoters of the rshA (anti-sigma for sH) and trxB1 (thioredoxin) genes were found to be sigma(H)-dependent, whereas the promoter of the sigB gene (sigma factor sigma(B)) was sigma(E)-and sigma(H)-dependent. It was confirmed that the promoter of the cg2556 gene (iron-regulated membrane protein) is sigma(C)-dependent as suggested recently by other authors. The promoter of cmt1 (trehalose corynemycolyl transferase) was found to be clearly sigma(D)-dependent. No sigma(M)-dependent promoter was identified. The typical housekeeping promoter P2sigA (sigma factor sigma(A)) was proven to be sigma(A)-dependent but also recognized by sigma(B). Similarly, the promoter of fba (fructose-1,6-bisphosphate aldolase) was confirmed to be sigma(B)-dependent but also functional with sigma(A). The study provided demonstrations of the broad applicability of the developed methods and produced original data on the analyzed promoters.
Stichworte
Corynebacterium glutamicum; Promoter; Sigma factor; In vitro; transcription; RNA polymerase
Erscheinungsjahr
2017
Zeitschriftentitel
AMB EXPRESS
Band
7
Art.-Nr.
133
ISSN
2191-0855
Page URI
https://pub.uni-bielefeld.de/record/2916525

Zitieren

Dostalova H, Holatko J, Busche T, et al. Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB EXPRESS. 2017;7: 133.
Dostalova, H., Holatko, J., Busche, T., Rucka, L., Rapoport, A., Halada, P., Nesvera, J., et al. (2017). Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB EXPRESS, 7, 133. doi:10.1186/s13568-017-0436-8
Dostalova, H., Holatko, J., Busche, T., Rucka, L., Rapoport, A., Halada, P., Nesvera, J., Kalinowski, J., and Patek, M. (2017). Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB EXPRESS 7:133.
Dostalova, H., et al., 2017. Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB EXPRESS, 7: 133.
H. Dostalova, et al., “Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum”, AMB EXPRESS, vol. 7, 2017, : 133.
Dostalova, H., Holatko, J., Busche, T., Rucka, L., Rapoport, A., Halada, P., Nesvera, J., Kalinowski, J., Patek, M.: Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB EXPRESS. 7, : 133 (2017).
Dostalova, Hana, Holatko, Jiri, Busche, Tobias, Rucka, Lenka, Rapoport, Andrey, Halada, Petr, Nesvera, Jan, Kalinowski, Jörn, and Patek, Miroslav. “Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum”. AMB EXPRESS 7 (2017): 133.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032.
Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M., Front Microbiol 9(), 2018
PMID: 30687273

46 References

Daten bereitgestellt von Europe PubMed Central.

Engineering yeast transcription machinery for improved ethanol tolerance and production.
Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G., Science 314(5805), 2006
PMID: 17158319
Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states.
Cho BK, Kim D, Knight EM, Zengler K, Palsson BO., BMC Biol. 12(), 2014
PMID: 24461193
Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation.
Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H., Appl. Environ. Microbiol. 74(16), 2008
PMID: 18567683
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Cloning and transcriptional characterization of two sigma factor genes, sigA and sigB, from Brevibacterium flavum.
Halgasova N, Bukovska G, Timko J, Kormanec J., Curr. Microbiol. 43(4), 2001
PMID: 11683358
The Brevibacterium flavum sigma factor SigB has a role in the environmental stress response.
Halgasova N, Bukovska G, Ugorcakova J, Timko J, Kormanec J., FEMS Microbiol. Lett. 216(1), 2002
PMID: 12423756
Techniques for transformation of E. coli
Hanahan D., 1985
Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes.
Holatko J, Silar R, Rabatinova A, Sanderova H, Halada P, Nesvera J, Krasny L, Patek M., Appl. Microbiol. Biotechnol. 96(2), 2012
PMID: 22885668
Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis.
Knoppova M, Phensaijai M, Vesely M, Zemanova M, Nesvera J, Patek M., Curr. Microbiol. 55(3), 2007
PMID: 17657537
Global strain engineering by mutant transcription factors.
Lanza AM, Alper HS., Methods Mol. Biol. 765(), 2011
PMID: 21815097
Compilation of E. coli mRNA promoter sequences.
Lisser S, Margalit H., Nucleic Acids Res. 21(7), 1993
PMID: 8479900
Combinatorial and high-throughput screening approaches for strain engineering.
Liu W, Jiang R., Appl. Microbiol. Biotechnol. 99(5), 2015
PMID: 25634017
Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
Nesvera J, Patek M., Appl. Microbiol. Biotechnol. 90(5), 2011
PMID: 21519933
Corynebacterium glutamicum sigmaE is involved in responses to cell surface stresses and its activity is controlled by the anti-sigma factor CseE.
Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS., Microbiology (Reading, Engl.) 154(Pt 3), 2008
PMID: 18310037
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Corynebacterium glutamicum promoters: a practical approach.
Patek M, Holatko J, Busche T, Kalinowski J, Nesvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
Characterizing the interplay between multiple levels of organization within bacterial sigma factor regulatory networks.
Qiu Y, Nagarajan H, Embree M, Shieu W, Abate E, Juarez K, Cho BK, Elkins JG, Nevin KP, Barrett CL, Lovley DR, Palsson BO, Zengler K., Nat Commun 4(), 2013
PMID: 23612296
Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters.
Rhodius VA, Segall-Shapiro TH, Sharon BD, Ghodasara A, Orlova E, Tabakh H, Burkhardt DH, Clancy K, Peterson TC, Gross CA, Voigt CA., Mol. Syst. Biol. 9(), 2013
PMID: 24169405
The sigma factors of Mycobacterium tuberculosis.
Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R., FEMS Microbiol. Rev. 30(6), 2006
PMID: 17064287
E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo.
Ross W, Thompson JF, Newlands JT, Gourse RL., EMBO J. 9(11), 1990
PMID: 2209559

Sambrook J, Russel DV., 2001
Use of In Vitro Transcription System for Analysis of Corynebacterium glutamicum Promoters Recognized by Two Sigma Factors.
Silar R, Holatko J, Rucka L, Rapoport A, Dostalova H, Kaderabkova P, Nesvera J, Patek M., Curr. Microbiol. 73(3), 2016
PMID: 27270733
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl. Microbiol. Biotechnol. 100(1), 2016
PMID: 26496920
Bacterial sigma factors as targets for engineered or synthetic transcriptional control.
Tripathi L, Zhang Y, Lin Z., Front Bioeng Biotechnol 2(), 2014
PMID: 25232540
Expanding the metabolic engineering toolbox: more options to engineer cells.
Tyo KE, Alper HS, Stephanopoulos GN., Trends Biotechnol. 25(3), 2007
PMID: 17254656
A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors.
Yu H, Tyo K, Alper H, Klein-Marcuschamer D, Stephanopoulos G., Biotechnol. Bioeng. 101(4), 2008
PMID: 18500764
Chromosomally encoded small antisense RNA in Corynebacterium glutamicum.
Zemanova M, Kaderabkova P, Patek M, Knoppova M, Silar R, Nesvera J., FEMS Microbiol. Lett. 279(2), 2007
PMID: 18093135
Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering.
Zhang F, Qian X, Si H, Xu G, Han R, Ni Y., Microb. Cell Fact. 14(), 2015
PMID: 26542360

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28651382
PubMed | Europe PMC

Suchen in

Google Scholar