Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells

Romanova N, Noll T (2017)
Biotechnology Journal 13(3): 1700232.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Erscheinungsjahr
Zeitschriftentitel
Biotechnology Journal
Band
13
Ausgabe
3
Art.-Nr.
1700232
ISSN
PUB-ID

Zitieren

Romanova N, Noll T. Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells. Biotechnology Journal. 2017;13(3): 1700232.
Romanova, N., & Noll, T. (2017). Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells. Biotechnology Journal, 13(3), 1700232. doi:10.1002/biot.201700232
Romanova, N., and Noll, T. (2017). Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells. Biotechnology Journal 13:1700232.
Romanova, N., & Noll, T., 2017. Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells. Biotechnology Journal, 13(3): 1700232.
N. Romanova and T. Noll, “Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells”, Biotechnology Journal, vol. 13, 2017, : 1700232.
Romanova, N., Noll, T.: Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells. Biotechnology Journal. 13, : 1700232 (2017).
Romanova, Nadiya, and Noll, Thomas. “Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells”. Biotechnology Journal 13.3 (2017): 1700232.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Two human MARs effectively increase transgene expression in transfected CHO cells.
Li Q, Zhao CP, Lin Y, Song C, Wang F, Wang TY., J Cell Mol Med 23(2), 2019
PMID: 30450759
Enhancing CHO by Systems Biotechnology.
Borth N, Hu WS., Biotechnol J 13(3), 2018
PMID: 29544035

106 References

Daten bereitgestellt von Europe PubMed Central.

Cell engineering and cultivation of chinese hamster ovary (CHO) cells.
Omasa T, Onitsuka M, Kim WD., Curr Pharm Biotechnol 11(3), 2010
PMID: 20210750

Kim, Appl. Microbiol. Biotechnol 93(), 2012
Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells.
Urlaub G, Kas E, Carothers AM, Chasin LA., Cell 33(2), 1983
PMID: 6305508
Rapid protein production using CHO stable transfection pools.
Ye J, Alvin K, Latif H, Hsu A, Parikh V, Whitmer T, Tellers M, de la Cruz Edmonds MC, Ly J, Salmon P, Markusen JF., Biotechnol. Prog. 26(5), 2010
PMID: 20564356

Danino, Biochim. Biophys. Acta 1849(), 2015
Perspectives on the RNA polymerase II core promoter.
Kadonaga JT., Wiley Interdiscip Rev Dev Biol 1(1), 2011
PMID: 23801666
Impact of Different Promoters on Episomal Vectors Harbouring Characteristic Motifs of Matrix Attachment Regions.
Wang XY, Zhang JH, Zhang X, Sun QL, Zhao CP, Wang TY., Sci Rep 6(), 2016
PMID: 27226236

Wang, Sci. Rep 7(), 2017
Promoter-regulatory region of the major immediate early gene of human cytomegalovirus.
Thomsen DR, Stenberg RM, Goins WF, Stinski MF., Proc. Natl. Acad. Sci. U.S.A. 81(3), 1984
PMID: 6322160
Serum-dependent and cell cycle-dependent expression from a cytomegalovirus-based mammalian expression vector.
Brightwell G, Poirier V, Cole E, Ivins S, Brown KW., Gene 194(1), 1997
PMID: 9266680
CMV promoter mutants with a reduced propensity to productivity loss in CHO cells.
Moritz B, Becker PB, Gopfert U., Sci Rep 5(), 2015
PMID: 26581326

Kim, Biotechnol. Bioeng 108(), 2011
Influence of promoter choice and trichostatin A treatment on expression of baculovirus delivered genes in mammalian cells.
Spenger A, Ernst W, Condreay JP, Kost TA, Grabherr R., Protein Expr. Purif. 38(1), 2004
PMID: 15477077

Macias, J. Virol (), 1996

Massie, J. Virol 72(), 1998

Herr, Sem. Virol 4(), 1993
Requirement of stereospecific alignments for initiation from the simian virus 40 early promoter.
Takahashi K, Vigneron M, Matthes H, Wildeman A, Zenke M, Chambon P., Nature 319(6049), 1986
PMID: 3001535

Voss, Trends Biochem. Sci 11(), 1986
Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter.
Fan L, Kadura I, Krebs LE, Larson JL, Bowden DM, Frye CC., J. Biotechnol. 168(4), 2013
PMID: 23994266
The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection.
Gorman CM, Merlino GT, Willingham MC, Pastan I, Howard BH., Proc. Natl. Acad. Sci. U.S.A. 79(22), 1982
PMID: 6294651

Mobley, J. Virol 72(), 1998
The mouse Pgk-1 gene promoter contains an upstream activator sequence.
McBurney MW, Sutherland LC, Adra CN, Leclair B, Rudnicki MA, Jardine K., Nucleic Acids Res. 19(20), 1991
PMID: 1945853
Hypoxia activates constitutive luciferase reporter constructs.
Doran DM, Kulkarni-Datar K, Cool DR, Brown TL., Biochimie 93(2), 2010
PMID: 20971156
The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice.
Schorpp M, Jager R, Schellander K, Schenkel J, Wagner EF, Weiher H, Angel P., Nucleic Acids Res. 24(9), 1996
PMID: 8650001
Systematic comparison of constitutive promoters and the doxycycline-inducible promoter.
Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT., PLoS ONE 5(5), 2010
PMID: 20485554

Li, Cell. Mol. Life Sci 65(), 2008
A potent enhancer element in the 5'-UTR intron is crucial for transcriptional regulation of the human ubiquitin C gene.
Bianchi M, Crinelli R, Giacomini E, Carloni E, Magnani M., Gene 448(1), 2009
PMID: 19733223
Molecular Dissection of the Human Ubiquitin C Promoter Reveals Heat Shock Element Architectures with Activating and Repressive Functions.
Crinelli R, Bianchi M, Radici L, Carloni E, Giacomini E, Magnani M., PLoS ONE 10(8), 2015
PMID: 26317694
Identification of CHO endogenous gene regulatory elements.
Pontiller J, Maccani A, Baumann M, Klancnik I, Ernst W., Mol. Biotechnol. 45(3), 2010
PMID: 20369309
Chinese hamster genome sequenced from sorted chromosomes.
Brinkrolf K, Rupp O, Laux H, Kollin F, Ernst W, Linke B, Kofler R, Romand S, Hesse F, Budach WE, Galosy S, Muller D, Noll T, Wienberg J, Jostock T, Leonard M, Grillari J, Tauch A, Goesmann A, Helk B, Mott JE, Puhler A, Borth N., Nat. Biotechnol. 31(8), 2013
PMID: 23929341
Identification of CHO endogenous promoter elements based on a genomic library approach.
Pontiller J, Gross S, Thaisuchat H, Hesse F, Ernst W., Mol. Biotechnol. 39(2), 2008
PMID: 18327559

Deer, Biotechnol. Prog 20(), 2004
Identification of a novel temperature sensitive promoter in CHO cells.
Thaisuchat H, Baumann M, Pontiller J, Hesse F, Ernst W., BMC Biotechnol. 11(), 2011
PMID: 21569433
Transcriptome and proteome profiling to understanding the biology of high productivity CHO cells.
Nissom PM, Sanny A, Kok YJ, Hiang YT, Chuah SH, Shing TK, Lee YY, Wong KT, Hu WS, Sim MY, Philp R., Mol. Biotechnol. 34(2), 2006
PMID: 17172658

Takagi, Cytotechnology 69(), 2017
Discovery of transcription start sites in the Chinese hamster genome by next-generation RNA sequencing.
Jakobi T, Brinkrolf K, Tauch A, Noll T, Stoye J, Puhler A, Goesmann A., J. Biotechnol. 190(), 2014
PMID: 25086342
The RNA polymerase II core promoter - the gateway to transcription.
Juven-Gershon T, Hsu JY, Theisen JW, Kadonaga JT., Curr. Opin. Cell Biol. 20(3), 2008
PMID: 18436437
Rational design of a super core promoter that enhances gene expression.
Juven-Gershon T, Cheng S, Kadonaga JT., Nat. Methods 3(11), 2006
PMID: 17124735

Even, PLoS ONE 11(), 2016
Exploiting nucleotide composition to engineer promoters.
Grabherr MG, Pontiller J, Mauceli E, Ernst W, Baumann M, Biagi T, Swofford R, Russell P, Zody MC, Di Palma F, Lindblad-Toh K, Grabherr RM., PLoS ONE 6(5), 2011
PMID: 21625601
Artificially designed promoters: understanding the role of spatial features and canonical binding sites in transcription.
Baumann M, Hoppner MP, Meier M, Pontiller J, Ernst W, Grabherr R, Mauceli E, Grabherr MG., Bioeng Bugs 3(2), 2012
PMID: 22095054

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Inducible gene expression systems for higher eukaryotic cells.
Gossen M, Bonin AL, Freundlieb S, Bujard H., Curr. Opin. Biotechnol. 5(5), 1994
PMID: 7765466
Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.
Gossen M, Bujard H., Proc. Natl. Acad. Sci. U.S.A. 89(12), 1992
PMID: 1319065
Transcriptional activation by tetracyclines in mammalian cells.
Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H., Science 268(5218), 1995
PMID: 7792603
Improved Tet-responsive promoters with minimized background expression.
Loew R, Heinz N, Hampf M, Bujard H, Gossen M., BMC Biotechnol. 10(), 2010
PMID: 21106052
Retroviral and transposon-based tet-regulated all-in-one vectors with reduced background expression and improved dynamic range.
Heinz N, Schambach A, Galla M, Maetzig T, Baum C, Loew R, Schiedlmeier B., Hum. Gene Ther. 22(2), 2010
PMID: 20825282
Ecdysone-inducible gene expression in mammalian cells and transgenic mice.
No D, Yao TP, Evans RM., Proc. Natl. Acad. Sci. U.S.A. 93(8), 1996
PMID: 8622939
Production of a secreted glycoprotein from an inducible promoter system in a perfusion bioreactor.
Lipscomb ML, Mowry MC, Kompala DS., Biotechnol. Prog. 20(5), 2004
PMID: 15458323
The cumate gene-switch: a system for regulated expression in mammalian cells.
Mullick A, Xu Y, Warren R, Koutroumanis M, Guilbault C, Broussau S, Malenfant F, Bourget L, Lamoureux L, Lo R, Caron AW, Pilotte A, Massie B., BMC Biotechnol. 6(), 2006
PMID: 17083727
High-level recombinant protein production in CHO cells using an adenoviral vector and the cumate gene-switch.
Gaillet B, Gilbert R, Amziani R, Guilbault C, Gadoury C, Caron AW, Mullick A, Garnier A, Massie B., Biotechnol. Prog. 23(1), 2007
PMID: 17269689

Gaillet, Biotechnol. Bioeng 106(), 2010
Elucidating the effects of postinduction glutamine feeding on the growth and productivity of CHO cells.
Sheikholeslami Z, Jolicoeur M, Henry O., Biotechnol. Prog. 30(3), 2014
PMID: 24692260
Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.
Poulain A, Perret S, Malenfant F, Mullick A, Massie B, Durocher Y., J. Biotechnol. 255(), 2017
PMID: 28625678
Epigenetic regulatory elements: Recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells.
Harraghy N, Calabrese D, Fisch I, Girod PA, LeFourn V, Regamey A, Mermod N., Biotechnol J 10(7), 2015
PMID: 26099730
Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing.
Antoniou M, Harland L, Mustoe T, Williams S, Holdstock J, Yague E, Mulcahy T, Griffiths M, Edwards S, Ioannou PA, Mountain A, Crombie R., Genomics 82(3), 2003
PMID: 12906852
CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells.
Williams S, Mustoe T, Mulcahy T, Griffiths M, Simpson D, Antoniou M, Irvine A, Mountain A, Crombie R., BMC Biotechnol. 5(), 2005
PMID: 15935093
Ubiquitous Chromatin-opening Elements (UCOEs): Applications in biomanufacturing and gene therapy.
Neville JJ, Orlando J, Mann K, McCloskey B, Antoniou MN., Biotechnol. Adv. 35(5), 2017
PMID: 28528197

Lindahl, Epigenetics 2(), 2007
Transcriptional regulation of the human TATA binding protein gene.
Harland L, Crombie R, Anson S, deBoer J, Ioannou PA, Antoniou M., Genomics 79(4), 2002
PMID: 11944977
Simple scale-up of recombinant antibody production using an UCOE containing vector.
Boscolo S, Mion F, Licciulli M, Macor P, De Maso L, Brce M, Antoniou MN, Marzari R, Santoro C, Sblattero D., N Biotechnol 29(4), 2011
PMID: 22226921

Saunders, PLoS ONE 10(), 2015
Evaluation of changes in promoters, use of UCOES and chain order to improve the antibody production in CHO cells.
Rocha-Pizana MDR, Ascencio-Favela G, Soto-Garcia BM, Martinez-Fierro ML, Alvarez MM., Protein Expr. Purif. 132(), 2017
PMID: 28161546
Identification of a class of chromatin boundary elements.
Cuvier O, Hart CM, Laemmli UK., Mol. Cell. Biol. 18(12), 1998
PMID: 9819433
Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells.
Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D, Regamey A, Saugy D, Beckmann JS, Bucher P, Mermod N., Nat. Methods 4(9), 2007
PMID: 17676049
Improved recombinant gene expression in CHO cells using matrix attachment regions.
Kim JM, Kim JS, Park DH, Kang HS, Yoon J, Baek K, Yoon Y., J. Biotechnol. 107(2), 2004
PMID: 14711493
Development of stable cell lines for production or regulated expression using matrix attachment regions.
Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, de Jesus M, Wurm F, Mermod N., J. Biotechnol. 87(1), 2001
PMID: 11267697

Galbete, Mol. Biosyst 5(), 2009
Use of the chicken lysozyme 5' matrix attachment region to generate high producer CHO cell lines.
Girod PA, Zahn-Zabal M, Mermod N., Biotechnol. Bioeng. 91(1), 2005
PMID: 15889435
Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells.
Zhao CP, Guo X, Chen SJ, Li CZ, Yang Y, Zhang JH, Chen SN, Jia YL, Wang TY., Sci Rep 7(), 2017
PMID: 28216629
Regulating effects of insertion direction of matrix attachment regions on transgenic expression in stably transformed Chinese hamster ovary cells.
Wang F, Zhang JH, Wang TY, Dong WH, Yang XJ, Wang XY, Wang L, Yang R, Li Q, Zhao CP., Genet. Mol. Res. 14(2), 2015
PMID: 26125912
Roles of chromatin insulator proteins in higher-order chromatin organization and transcription regulation.
Vogelmann J, Valeri A, Guillou E, Cuvier O, Nollmann M., Nucleus 2(5), 2011
PMID: 21983085

Kim, Cell 128(), 2007
Insulators and promoters: closer than we think.
Raab JR, Kamakaka RT., Nat. Rev. Genet. 11(6), 2010
PMID: 20442713
Making connections: insulators organize eukaryotic chromosomes into independent cis-regulatory networks.
Chetverina D, Aoki T, Erokhin M, Georgiev P, Schedl P., Bioessays 36(2), 2013
PMID: 24277632
Chicken beta-globin 5'HS4 insulators function to reduce variability in transgenic founder mice.
Potts W, Tucker D, Wood H, Martin C., Biochem. Biophys. Res. Commun. 273(3), 2000
PMID: 10891364

Izumi, J. Cell. Biochem 76(), 1999
Methods to create a stringent selection system for mammalian cell lines.
Van Blokland HJ, Hoeksema F, Siep M, Otte AP, Verhees JA., Cytotechnology 63(4), 2011
PMID: 21509612
Identification of anti-repressor elements that confer high and stable protein production in mammalian cells.
Kwaks TH, Barnett P, Hemrika W, Siersma T, Sewalt RG, Satijn DP, Brons JF, van Blokland R, Kwakman P, Kruckeberg AL, Kelder A, Otte AP., Nat. Biotechnol. 21(5), 2003
PMID: 12679786
The use of a stringent selection system allows the identification of DNA elements that augment gene expression.
Hoeksema F, van Blokland R, Siep M, Hamer K, Siersma T, den Blaauwen J, Verhees J, Otte AP., Mol. Biotechnol. 48(1), 2011
PMID: 21046488

Matsuda, Proc. Natl. Acad. Sci. USA 101(), 2004
New adenovirus vectors for protein production and gene transfer.
Massie B, Mosser DD, Koutroumanis M, Vitte-Mony I, Lamoureux L, Couture F, Paquet L, Guilbault C, Dionne J, Chahla D, Jolicoeur P, Langelier Y., Cytotechnology 28(1-3), 1998
PMID: 19003407
The chicken beta-globin 5'HS4 boundary element blocks enhancer-mediated suppression of silencing.
Walters MC, Fiering S, Bouhassira EE, Scalzo D, Goeke S, Magis W, Garrick D, Whitelaw E, Martin DI., Mol. Cell. Biol. 19(5), 1999
PMID: 10207095

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29145694
PubMed | Europe PMC

Suchen in

Google Scholar