Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7

Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D (2017)
Genome Biology 18(1): 204.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.52 MB
Abstract / Bemerkung
Background Functions for RNA-binding proteins in orchestrating plant development and environmental responses are well established. However, the lack of a genome-wide view of their in vivo binding targets and binding landscapes represents a gap in understanding the mode of action of plant RNA-binding proteins. Here, we adapt individual nucleotide resolution crosslinking and immunoprecipitation (iCLIP) genome-wide to determine the binding repertoire of the circadian clock-regulated Arabidopsis thaliana glycine-rich RNA-binding protein AtGRP7. Results iCLIP identifies 858 transcripts with significantly enriched crosslink sites in plants expressing AtGRP7-GFP that are absent in plants expressing an RNA-binding-dead AtGRP7 variant or GFP alone. To independently validate the targets, we performed RNA immunoprecipitation (RIP)-sequencing of AtGRP7-GFP plants subjected to formaldehyde fixation. Of the iCLIP targets, 452 were also identified by RIP-seq and represent a set of high-confidence binders. AtGRP7 can bind to all transcript regions, with a preference for 3′ untranslated regions. In the vicinity of crosslink sites, U/C-rich motifs are overrepresented. Cross-referencing the targets against transcriptome changes in AtGRP7 loss-of-function mutants or AtGRP7-overexpressing plants reveals a predominantly negative effect of AtGRP7 on its targets. In particular, elevated AtGRP7 levels lead to damping of circadian oscillations of transcripts, including DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN2 and CCR-LIKE. Furthermore, several targets show changes in alternative splicing or polyadenylation in response to altered AtGRP7 levels. Conclusions We have established iCLIP for plants to identify target transcripts of the RNA-binding protein AtGRP7. This paves the way to investigate the dynamics of posttranscriptional networks in response to exogenous and endogenous cues.
Stichworte
Circadian rhythm; Individual nucleotide resolution crosslinking and immunoprecipitation (iCLIP); RNA immunoprecipitation (RIP); RNA-binding protein
Erscheinungsjahr
2017
Zeitschriftentitel
Genome Biology
Band
18
Ausgabe
1
Art.-Nr.
204
ISSN
1474-760X
Page URI
https://pub.uni-bielefeld.de/record/2914954

Zitieren

Meyer K, Köster T, Nolte C, et al. Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biology. 2017;18(1): 204.
Meyer, K., Köster, T., Nolte, C., Weinholdt, C., Lewinski, M., Grosse, I., & Staiger, D. (2017). Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biology, 18(1), 204. https://doi.org/10.1186/s13059-017-1332-x
Meyer, Katja, Köster, Tino, Nolte, Christine, Weinholdt, Claus, Lewinski, Martin, Grosse, Ivo, and Staiger, Dorothee. 2017. “Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7”. Genome Biology 18 (1): 204.
Meyer, K., Köster, T., Nolte, C., Weinholdt, C., Lewinski, M., Grosse, I., and Staiger, D. (2017). Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biology 18:204.
Meyer, K., et al., 2017. Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biology, 18(1): 204.
K. Meyer, et al., “Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7”, Genome Biology, vol. 18, 2017, : 204.
Meyer, K., Köster, T., Nolte, C., Weinholdt, C., Lewinski, M., Grosse, I., Staiger, D.: Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biology. 18, : 204 (2017).
Meyer, Katja, Köster, Tino, Nolte, Christine, Weinholdt, Claus, Lewinski, Martin, Grosse, Ivo, and Staiger, Dorothee. “Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7”. Genome Biology 18.1 (2017): 204.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:53Z
MD5 Prüfsumme
3082b9fcc2665b4cf33da36eba549ebf


9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On the move through time - a historical review of plant clock research.
Johansson M, Köster T., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29607587
Directions for research and training in plant omics: Big Questions and Big Data.
Argueso CT, Assmann SM, Birnbaum KD, Chen S, Dinneny JR, Doherty CJ, Eveland AL, Friesner J, Greenlee VR, Law JA, Marshall-Colón A, Mason GA, O'Lexy R, Peck SC, Schmitz RJ, Song L, Stern D, Stern D, Varagona MJ, Walley JW, Williams CM., Plant Direct 3(4), 2019
PMID: 31245771
The m6A Reader ECT2 Controls Trichome Morphology by Affecting mRNA Stability in Arabidopsis.
Wei LH, Song P, Wang Y, Lu Z, Tang Q, Yu Q, Xiao Y, Zhang X, Duan HC, Jia G., Plant Cell 30(5), 2018
PMID: 29716990
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation.
Mateos JL, de Leone MJ, Torchio J, Reichel M, Staiger D., Genes (Basel) 9(12), 2018
PMID: 30544736
RNAs: dynamic and mutable.
Zavolan M, Graveley BR., Genome Biol 18(1), 2017
PMID: 29187228

99 References

Daten bereitgestellt von Europe PubMed Central.

Arabidopsis RNA immunoprecipitation.
Terzi LC, Simpson GG., Plant J. 59(1), 2009
PMID: 19419533
RNA-binding protein immunoprecipitation from whole-cell extracts.
Koster T, Staiger D., Methods Mol. Biol. 1062(), 2014
PMID: 24057392
CLIP identifies Nova-regulated RNA networks in the brain.
Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB., Science 302(5648), 2003
PMID: 14615540
Insights into the design and interpretation of iCLIP experiments.
Haberman N, Huppertz I, Attig J, Konig J, Wang Z, Hauer C, Hentze MW, Kulozik AE, Le Hir H, Curk T, Sibley CR, Zarnack K, Ule J., Genome Biol. 18(1), 2017
PMID: 28093074
Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions.
Sugimoto Y, Konig J, Hussain S, Zupan B, Curk T, Frye M, Ule J., Genome Biol. 13(8), 2012
PMID: 22863408
iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution.
Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J., Nat. Struct. Mol. Biol. 17(7), 2010
PMID: 20601959
The circadian clock goes genomic.
Staiger D, Shin J, Johansson M, Davis SJ., Genome Biol. 14(6), 2013
PMID: 23796230
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Koster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res. 40(22), 2012
PMID: 23042250
Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli.
Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H., Nucleic Acids Res. 35(2), 2006
PMID: 17169986
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.
Schoning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D., Plant J. 52(6), 2007
PMID: 17924945

AUTHOR UNKNOWN, 0
Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana.
Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H., Plant J. 55(3), 2008
PMID: 18410480
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schoning JC, Alfano JR, Staiger D., Plant J. 56(2), 2008
PMID: 18573194
A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis.
Lohr B, Streitner C, Steffen A, Lange T, Staiger D., Mol. Biol. Rep. 41(1), 2013
PMID: 24281950
A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins.
Rothbauer U, Zolghadr K, Muyldermans S, Schepers A, Cardoso MC, Leonhardt H., Mol. Cell Proteomics 7(2), 2007
PMID: 17951627
The PUF binding landscape in metazoan germ cells.
Prasad A, Porter DF, Kroll-Conner PL, Mohanty I, Ryan AR, Crittenden SL, Wickens M, Kimble J., RNA 22(7), 2016
PMID: 27165521
Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis.
He R, Drury GE, Rotari VI, Gordon A, Willer M, Farzaneh T, Woltering EJ, Gallois P., J. Biol. Chem. 283(2), 2007
PMID: 17998208
Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection.
Frohnmeyer H, Staiger D., Plant Physiol. 133(4), 2003
PMID: 14681524
det1-1-induced UV-C hyposensitivity through UVR3 and PHR1 photolyase gene over-expression.
Castells E, Molinier J, Drevensek S, Genschik P, Barneche F, Bowler C., Plant J. 63(3), 2010
PMID: 20487384
Lesion simulating disease 1 and enhanced disease susceptibility 1 differentially regulate UV-C-induced photooxidative stress signalling and programmed cell death in Arabidopsis thaliana.
Wituszynska W, Szechynska-Hebda M, Sobczak M, Rusaczonek A, Kozlowska-Makulska A, Witon D, Karpinski S., Plant Cell Environ. 38(2), 2014
PMID: 24471507
The RIPper case: identification of RNA-binding protein targets by RNA immunoprecipitation.
Koster T, Haas M, Staiger D., Methods Mol. Biol. 1158(), 2014
PMID: 24792047
AtRTD - a comprehensive reference transcript dataset resource for accurate quantification of transcript-specific expression in Arabidopsis thaliana.
Zhang R, Calixto CP, Tzioutziou NA, James AB, Simpson CG, Guo W, Marquez Y, Kalyna M, Patro R, Eyras E, Barta A, Nimmo HG, Brown JW., New Phytol. 208(1), 2015
PMID: 26111100
High-throughput analyses of hnRNP H1 dissects its multi-functional aspect.
Uren PJ, Bahrami-Samani E, de Araujo PR, Vogel C, Qiao M, Burns SC, Smith AD, Penalva LO., RNA Biol 13(4), 2016
PMID: 26760575
Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking.
Fecko CJ, Munson KM, Saunders A, Sun G, Begley TP, Lis JT, Webb WW., Photochem. Photobiol. 83(6), 2007
PMID: 18028214
HITS-CLIP: panoramic views of protein-RNA regulation in living cells.
Darnell RB., Wiley Interdiscip Rev RNA 1(2), 2010
PMID: 21935890
Genome-wide identification of Wig-1 mRNA targets by RIP-Seq analysis.
Bersani C, Huss M, Giacomello S, Xu LD, Bianchi J, Eriksson S, Jerhammar F, Alexeyenko A, Vilborg A, Lundeberg J, Lui WO, Wiman KG., Oncotarget 7(2), 2016
PMID: 26672765
Drosophila Imp iCLIP identifies an RNA assemblage coordinating F-actin formation.
Hansen HT, Rasmussen SH, Adolph SK, Plass M, Krogh A, Sanford J, Nielsen FC, Christiansen J., Genome Biol. 16(), 2015
PMID: 26054396
Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.
Hackmann C, Korneli C, Kutyniok M, Koster T, Wiedenlubbert M, Muller C, Staiger D., Plant Cell Environ. 37(3), 2013
PMID: 23961939
Properties of the reverse transcription reaction in mRNA quantification.
Stahlberg A, Hakansson J, Xian X, Semb H, Kubista M., Clin. Chem. 50(3), 2004
PMID: 14726469
MEME SUITE: tools for motif discovery and searching.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS., Nucleic Acids Res. 37(Web Server issue), 2009
PMID: 19458158
Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy.
Schuttpelz M, Schoning JC, Doose S, Neuweiler H, Peters E, Staiger D, Sauer M., J. Am. Chem. Soc. 130(29), 2008
PMID: 18576621
Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy.
Leder V, Lummer M, Tegeler K, Humpert F, Lewinski M, Schuttpelz M, Staiger D., Biochem. Biophys. Res. Commun. 453(1), 2014
PMID: 25251471
Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements.
Zarnack K, Konig J, Tajnik M, Martincorena I, Eustermann S, Stevant I, Reyes A, Anders S, Luscombe NM, Ule J., Cell 152(3), 2013
PMID: 23374342
Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5' splice site strength.
Wickramasinghe VO, Gonzalez-Porta M, Perera D, Bartolozzi AR, Sibley CR, Hallegger M, Ule J, Marioni JC, Venkitaraman AR., Genome Biol. 16(), 2015
PMID: 26392272
iCLIP identifies novel roles for SAFB1 in regulating RNA processing and neuronal function.
Rivers C, Idris J, Scott H, Rogers M, Lee YB, Gaunt J, Phylactou L, Curk T, Campbell C, Ule J, Norman M, Uney JB., BMC Biol. 13(), 2015
PMID: 26694817
Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis.
Koster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D., Nucleic Acids Res. 42(15), 2014
PMID: 25104024
Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress.
Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK., FEBS Lett. 580(28-29), 2006
PMID: 17112521
Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7.
Nicaise V, Joe A, Jeong BR, Korneli C, Boutrot F, Westedt I, Staiger D, Alfano JR, Zipfel C., EMBO J. 32(5), 2013
PMID: 23395902
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
Role for LSM genes in the regulation of circadian rhythms.
Perez-Santangelo S, Mancini E, Francey LJ, Schlaen RG, Chernomoretz A, Hogenesch JB, Yanovsky MJ., Proc. Natl. Acad. Sci. U.S.A. 111(42), 2014
PMID: 25288739
DiffLogo: a comparative visualization of sequence motifs.
Nettling M, Treutler H, Grau J, Keilwagen J, Posch S, Grosse I., BMC Bioinformatics 16(), 2015
PMID: 26577052
Leveraging transcript quantification for fast computation of alternative splicing profiles.
Alamancos GP, Pages A, Trincado JL, Bellora N, Eyras E., RNA 21(9), 2015
PMID: 26179515
Nonsense-mediated decay of alternative precursor mRNA splicing variants is a major determinant of the Arabidopsis steady state transcriptome.
Drechsel G, Kahles A, Kesarwani AK, Stauffer E, Behr J, Drewe P, Ratsch G, Wachter A., Plant Cell 25(10), 2013
PMID: 24163313
Small changes in ambient temperature affect alternative splicing in Arabidopsis thaliana.
Streitner C, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Plant Signal Behav 8(7), 2013
PMID: 23656882
Riboswitch control of gene expression in plants by splicing and alternative 3' end processing of mRNAs.
Wachter A, Tunc-Ozdemir M, Grove BC, Green PJ, Shintani DK, Breaker RR., Plant Cell 19(11), 2007
PMID: 17993623
iCLIP: protein-RNA interactions at nucleotide resolution.
Huppertz I, Attig J, D'Ambrogio A, Easton LE, Sibley CR, Sugimoto Y, Tajnik M, Konig J, Ule J., Methods 65(3), 2013
PMID: 24184352
Improved binding site assignment by high-resolution mapping of RNA-protein interactions using iCLIP.
Hauer C, Curk T, Anders S, Schwarzl T, Alleaume AM, Sieber J, Hollerer I, Bhuvanagiri M, Huber W, Hentze MW, Kulozik AE., Nat Commun 6(), 2015
PMID: 26260686
Tissue-specific clocks in Arabidopsis show asymmetric coupling.
Endo M, Shimizu H, Nohales MA, Araki T, Kay SA., Nature 515(7527), 2014
PMID: 25363766
The RNA-binding protein repertoire of Arabidopsis thaliana.
Marondedze C, Thomas L, Serrano NL, Lilley KS, Gehring C., Sci Rep 6(), 2016
PMID: 27405932
In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings.
Reichel M, Liao Y, Rettel M, Ragan C, Evers M, Alleaume AM, Horos R, Hentze MW, Preiss T, Millar AA., Plant Cell 28(10), 2016
PMID: 27729395
UV crosslinked mRNA-binding proteins captured from leaf mesophyll protoplasts.
Zhang Z, Boonen K, Ferrari P, Schoofs L, Janssens E, van Noort V, Rolland F, Geuten K., Plant Methods 12(), 2016
PMID: 27822292
SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.
Muller-McNicoll M, Botti V, de Jesus Domingues AM, Brandl H, Schwich OD, Steiner MC, Curk T, Poser I, Zarnack K, Neugebauer KM., Genes Dev. 30(5), 2016
PMID: 26944680
Exon Junction Complexes Show a Distributional Bias toward Alternatively Spliced mRNAs and against mRNAs Coding for Ribosomal Proteins.
Hauer C, Sieber J, Schwarzl T, Hollerer I, Curk T, Alleaume AM, Hentze MW, Kulozik AE., Cell Rep 16(6), 2016
PMID: 27475226
RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome.
Koster T, Marondedze C, Meyer K, Staiger D., Trends Plant Sci. 22(6), 2017
PMID: 28412036

AUTHOR UNKNOWN, 0
Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation.
Zhang Y, Gu L, Hou Y, Wang L, Deng X, Hang R, Chen D, Zhang X, Zhang Y, Liu C, Cao X., Cell Res. 25(7), 2015
PMID: 26099751
RNA-Binding Protein Musashi1 Is a Central Regulator of Adhesion Pathways in Glioblastoma.
Uren PJ, Vo DT, de Araujo PR, Potschke R, Burns SC, Bahrami-Samani E, Qiao M, de Sousa Abreu R, Nakaya HI, Correa BR, Kuhnol C, Ule J, Martindale JL, Abdelmohsen K, Gorospe M, Smith AD, Penalva LO., Mol. Cell. Biol. 35(17), 2015
PMID: 26100017
Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function.
Khan F, Daniels MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H., Nucleic Acids Res. 42(13), 2014
PMID: 24957607
A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate.
Foley SW, Gosai SJ, Wang D, Selamoglu N, Sollitti AC, Koster T, Steffen A, Lyons E, Daldal F, Garcia BA, Staiger D, Deal RB, Gregory BD., Dev. Cell 41(2), 2017
PMID: 28441533
Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins.
Kramer K, Sachsenberg T, Beckmann BM, Qamar S, Boon KL, Hentze MW, Kohlbacher O, Urlaub H., Nat. Methods 11(10), 2014
PMID: 25173706
Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry.
Sharma K, Hrle A, Kramer K, Sachsenberg T, Staals RH, Randau L, Marchfelder A, van der Oost J, Kohlbacher O, Conti E, Urlaub H., Methods 89(), 2015
PMID: 26071038
Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome.
Bieniawska Z, Espinoza C, Schlereth A, Sulpice R, Hincha DK, Hannah MA., Plant Physiol. 147(1), 2008
PMID: 18375597
Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes.
James AB, Syed NH, Bordage S, Marshall J, Nimmo GA, Jenkins GI, Herzyk P, Brown JW, Nimmo HG., Plant Cell 24(3), 2012
PMID: 22408072
Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p.
Kershaw CJ, Costello JL, Talavera D, Rowe W, Castelli LM, Sims PF, Grant CM, Ashe MP, Hubbard SJ, Pavitt GD., Sci Rep 5(), 2015
PMID: 26493364
Orchestration of floral initiation by APETALA1.
Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueno F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL., Science 328(5974), 2010
PMID: 20360106
Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis.
Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fornara F, Schneeberger K, Krajewski P, Coupland G., Genome Biol. 16(), 2015
PMID: 25853185
The role of the transcriptional activator protein DBP in circadian liver gene expression
Wuarin J, Falvey E, Lavery D, Talbot D, Schmidt E, Ossipow V, Fonjallaz P, Schibler U., 1992
RNA-binding proteins and circadian rhythms in Arabidopsis thaliana.
Staiger D., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 356(1415), 2001
PMID: 11710982
Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE.
Choudhary MK, Nomura Y, Shi H, Nakagami H, Somers DE., Front Plant Sci 7(), 2016
PMID: 27462335
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.
Heintzen C, Nater M, Apel K, Staiger D., Proc. Natl. Acad. Sci. U.S.A. 94(16), 1997
PMID: 9238008
Scientific migration of junior scientists to China.
Chen LL., Genome Biol. 15(6), 2014
PMID: 25001910
STAR: ultrafast universal RNA-seq aligner.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR., Bioinformatics 29(1), 2012
PMID: 23104886
BEDTools: a flexible suite of utilities for comparing genomic features.
Quinlan AR, Hall IM., Bioinformatics 26(6), 2010
PMID: 20110278
Salmon provides fast and bias-aware quantification of transcript expression.
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C., Nat. Methods 14(4), 2017
PMID: 28263959
Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage.
Soneson C, Matthes KL, Nowicka M, Law CW, Robinson MD., Genome Biol. 17(), 2016
PMID: 26813113
A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants.
Lummer M, Humpert F, Wiedenlubbert M, Sauer M, Schuttpelz M, Staiger D., Mol Plant 6(5), 2013
PMID: 23434876

Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., 2017

Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., 2017

Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., 2017

Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., 2017
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29084609
PubMed | Europe PMC

Suchen in

Google Scholar