Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum.

Albersmeier A, Pfeifer-Sancar K, Rückert C, Kalinowski J (2017)
Journal of Biotechnology 257: 99-109.

Zeitschriftenaufsatz | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The genome-wide identification of transcription start sites, enabled by high-throughput sequencing of a cDNA library enriched for native 5' transcript ends, is ideally suited for the analysis of promoters. Here, the transcriptome of Corynebacterium glutamicum, a non-pathogenic soil bacterium from the actinomycetes branch that is used in industry for the production of amino acids, was analysed by transcriptome sequencing of the 5'-ends of native transcripts. Total RNA samples were harvested from the exponential phase of growth, therefore the study mainly addressed promoters recognized by the main house-keeping sigma factor σA. The identification of 2454 transcription start sites (TSS) allowed the detailed analysis of most promoters recognized by σA and furthermore enabled us to form different promoter groups according to their location relative to protein-coding regions. These groups included leaderless transcripts (546 promoters), short-leadered (<500 bases) transcripts (917), and long-leadered (>500 bases) transcripts (173) as well as intragenic (557) and antisense transcripts (261). All promoters and the individual groups were searched for information, e.g. conserved residues and promoter motifs, and general design features as well as group-specific preferences were identified. A purine was found highly favored as TSS, whereas the -1 position was dominated by pyrimidines. The spacer between TSS and -10 region were consistently 6-7 bases and the -10 promoter motif was generally visible, whereas a recognizable -35 region was only occurring in a smaller fraction of promoters (7.5%) and enriched for leadered and antisense transcripts but depleted for leaderless transcripts. Promoters showing an extended -10 region were especially frequent in case of non-canonical -10 motifs (45.5%). Two bases downstream of the -10 core region, a G was conserved, exceeding 40% abundance in most groups. This fraction reached 74.6% for a group of putative σB-dependent promoters, thus giving a hint to a specific property of these promoters. In addition, the high number of promoters analysed allowed finding of subtle signals only showing up significantly with this large set. This included the observation of a periodically changing A+T-content with maxima spaced by a full turn of the DNA helix. This periodic structure includes the A+T-rich UP-element of bacterial promoters known before but was found to extend up to -100, indicating hitherto unknown constraints influencing promoter architecture and possibly also promoter function.
Erscheinungsjahr
2017
Zeitschriftentitel
Journal of Biotechnology
Band
257
Seite(n)
99-109
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/2913406

Zitieren

Albersmeier A, Pfeifer-Sancar K, Rückert C, Kalinowski J. Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. Journal of Biotechnology. 2017;257:99-109.
Albersmeier, A., Pfeifer-Sancar, K., Rückert, C., & Kalinowski, J. (2017). Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. Journal of Biotechnology, 257, 99-109. doi:10.1016/j.jbiotec.2017.04.008
Albersmeier, A., Pfeifer-Sancar, K., Rückert, C., and Kalinowski, J. (2017). Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. Journal of Biotechnology 257, 99-109.
Albersmeier, A., et al., 2017. Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. Journal of Biotechnology, 257, p 99-109.
A. Albersmeier, et al., “Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum.”, Journal of Biotechnology, vol. 257, 2017, pp. 99-109.
Albersmeier, A., Pfeifer-Sancar, K., Rückert, C., Kalinowski, J.: Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. Journal of Biotechnology. 257, 99-109 (2017).
Albersmeier, Andreas, Pfeifer-Sancar, Katharina, Rückert, Christian, and Kalinowski, Jörn. “Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum.”. Journal of Biotechnology 257 (2017): 99-109.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Native promoters of Corynebacterium glutamicum and its application in L-lysine production.
Shang X, Chai X, Lu X, Li Y, Zhang Y, Wang G, Zhang C, Liu S, Zhang Y, Ma J, Wen T., Biotechnol Lett 40(2), 2018
PMID: 29164417
Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032.
Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M., Front Microbiol 9(), 2018
PMID: 30687273
Iron and Zinc Regulate Expression of a Putative ABC Metal Transporter in Corynebacterium diphtheriae.
Peng ED, Oram DM, Battistel MD, Lyman LR, Freedberg DI, Schmitt MP., J Bacteriol 200(10), 2018
PMID: 29507090
Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.
Oliveira A, Oliveira LC, Aburjaile F, Benevides L, Tiwari S, Jamal SB, Silva A, Figueiredo HCP, Ghosh P, Portela RW, De Carvalho Azevedo VA, Wattam AR., Front Microbiol 8(), 2017
PMID: 29075239

55 References

Daten bereitgestellt von Europe PubMed Central.

Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR.
Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE., Science 305(5691), 2004
PMID: 15375261
Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming.
Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, Goesmann A., Bioinformatics 27(10), 2011
PMID: 21450712
Control site location and transcriptional regulation in Escherichia coli.
Collado-Vides J, Magasanik B, Gralla JD., Microbiol. Rev. 55(3), 1991
PMID: 1943993
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120
Degradation of RNA in bacteria: comparison of mRNA and stable RNA.
Deutscher MP., Nucleic Acids Res. 34(2), 2006
PMID: 16452296
Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation.
Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H., Appl. Environ. Microbiol. 74(16), 2008
PMID: 18567683
Identification of an UP element consensus sequence for bacterial promoters.
Estrem ST, Gaal T, Ross W, Gourse RL., Proc. Natl. Acad. Sci. U.S.A. 95(17), 1998
PMID: 9707549
The unique structure of A-tracts and intrinsic DNA bending.
Haran TE, Mohanty U., Q. Rev. Biophys. 42(1), 2009
PMID: 19508739
Analysis of E. coli promoter sequences.
Harley CB, Reynolds RP., Nucleic Acids Res. 15(5), 1987
PMID: 3550697
rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase.
Haugen SP, Berkmen MB, Ross W, Gaal T, Ward C, Gourse RL., Cell 125(6), 2006
PMID: 16777598
Fine structure of the promoter-sigma region 1.2 interaction.
Haugen SP, Ross W, Manrique M, Gourse RL., Proc. Natl. Acad. Sci. U.S.A. 105(9), 2008
PMID: 18287032
Compilation and analysis of Escherichia coli promoter DNA sequences.
Hawley DK, McClure WR., Nucleic Acids Res. 11(8), 1983
PMID: 6344016
Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation.
Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M., J. Biotechnol. 139(3), 2008
PMID: 19121344
Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters
Hook-Barnard, Gene Regul. Syst. Biol. 1(), 2007
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
The minus 35-recognition region of Escherichia coli sigma 70 is inessential for initiation of transcription at an "extended minus 10" promoter.
Kumar A, Malloch RA, Fujita N, Smillie DA, Ishihama A, Hayward RS., J. Mol. Biol. 232(2), 1993
PMID: 8345519
Bacillus anthracis genome organization in light of whole transcriptome sequencing.
Martin J, Zhu W, Passalacqua KD, Bergman N, Borodovsky M., BMC Bioinformatics 11 Suppl 3(), 2010
PMID: 20438648
Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex.
Mekler V, Kortkhonjia E, Mukhopadhyay J, Knight J, Revyakin A, Kapanidis AN, Niu W, Ebright YW, Levy R, Ebright RH., Cell 108(5), 2002
PMID: 11893332
Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli.
Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L, Taboada B, Jimenez-Jacinto V, Salgado H, Juarez K, Contreras-Moreira B, Huerta AM, Collado-Vides J, Morett E., PLoS ONE 4(10), 2009
PMID: 19838305
UP element-dependent transcription at the Escherichia coli rrnB P1 promoter: positional requirements and role of the RNA polymerase alpha subunit linker.
Meng W, Belyaeva T, Savery NJ, Busby SJ, Ross WE, Gaal T, Gourse RL, Thomas MS., Nucleic Acids Res. 29(20), 2001
PMID: 11600705
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
Mentz A, Neshat A, Pfeifer-Sancar K, Puhler A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138339
Identification and analysis of 'extended -10' promoters in Escherichia coli.
Mitchell JE, Zheng D, Busby SJ, Minchin SD., Nucleic Acids Res. 31(16), 2003
PMID: 12907708
An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803.
Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voss B, Steglich C, Wilde A, Vogel J, Hess WR., Proc. Natl. Acad. Sci. U.S.A. 108(5), 2011
PMID: 21245330
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Promoters of Corynebacterium glutamicum.
Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G., J. Biotechnol. 104(1-3), 2003
PMID: 12948648
Corynebacterium glutamicum promoters: a practical approach.
Patek M, Holatko J, Busche T, Kalinowski J, Nesvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350
Promoters responsive to DNA bending: a common theme in prokaryotic gene expression.
Perez-Martin J, Rojo F, de Lorenzo V., Microbiol. Rev. 58(2), 1994
PMID: 8078436
Structure and complexity of a bacterial transcriptome.
Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman NH., J. Bacteriol. 191(10), 2009
PMID: 19304856
The G+C-rich discriminator region of the tyrT promoter antagonises the formation of stable preinitiation complexes.
Pemberton IK, Muskhelishvili G, Travers AA, Buckle M., J. Mol. Biol. 299(4), 2000
PMID: 10843842
RpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a -35 box.
Petersen L, Larsen TS, Ussery DW, On SL, Krogh A., J. Mol. Biol. 326(5), 2003
PMID: 12595250
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
Regulatory sequences involved in the promotion and termination of RNA transcription.
Rosenberg M, Court D., Annu. Rev. Genet. 13(), 1979
PMID: 94251
A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase.
Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K, Gourse RL., Science 262(5138), 1993
PMID: 8248780
The primary transcriptome of the major human pathogen Helicobacter pylori.
Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, Stadler PF, Vogel J., Nature 464(7286), 2010
PMID: 20164839
Characterization of the 5'-terminal structure of simian virus 40 early mRNA's.
Thompson JA, Radonovich MF, Salzman NP., J. Virol. 31(2), 1979
PMID: 90173
Analysis of the Corynebacterium glutamicum dapA promoter.
Vasicova P, Patek M, Nesvera J, Sahm H, Eikmanns B., J. Bacteriol. 181(19), 1999
PMID: 10498736
RNA-Seq: a revolutionary tool for transcriptomics.
Wang Z, Gerstein M, Snyder M., Nat. Rev. Genet. 10(1), 2009
PMID: 19015660
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J. Biotechnol. 124(1), 2006
PMID: 16406159
Structural basis of transcription initiation.
Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX, Arnold E, Ebright RH., Science 338(6110), 2012
PMID: 23086998

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28412515
PubMed | Europe PMC

Suchen in

Google Scholar