Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond

Kulis-Horn R, Rückert C, Kalinowski J, Persicke M (2017)
BMC Microbiology 17(1): 161.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.66 MB
Abstract / Bemerkung
Background The eighth step of l-histidine biosynthesis is carried out by an enzyme called histidinol-phosphate phosphatase (HolPase). Three unrelated HolPase families are known so far. Two of them are well studied: HAD-type HolPases known from Gammaproteobacteria like Escherichia coli or Salmonella enterica and PHP-type HolPases known from yeast and Firmicutes like Bacillus subtilis. However, the third family of HolPases, the inositol monophosphatase (IMPase)-like HolPases, present in Actinobacteria like Corynebacterium glutamicum (HisN) and plants, are poorly characterized. Moreover, there exist several IMPase-like proteins in bacteria (e.g. CysQ, ImpA, and SuhB) which are very similar to HisN but most likely do not participate in l-histidine biosynthesis. Results Deletion of hisN, the gene encoding the IMPase-like HolPase in C. glutamicum, does not result in complete l-histidine auxotrophy. Out of four hisN homologs present in the genome of C. glutamicum (impA, suhB, cysQ, and cg0911), only cg0911 encodes an enzyme with HolPase activity. The enzymatic properties of HisN and Cg0911 were determined, delivering the first available kinetic data for IMPase-like HolPases. Additionally, we analyzed the amino acid sequences of potential HisN, ImpA, SuhB, CysQ and Cg0911 orthologs from bacteria and identified six conserved sequence motifs for each group of orthologs. Mutational studies confirmed the importance of a highly conserved aspartate residue accompanied by several aromatic amino acid residues present in motif 5 for HolPase activity. Several bacterial proteins containing all identified HolPase motifs, but showing only moderate sequence similarity to HisN from C. glutamicum, were experimentally confirmed as IMPase-like HolPases, demonstrating the value of the identified motifs. Based on the confirmed IMPase-like HolPases two profile Hidden Markov Models (HMMs) were build using an iterative approach. These HMMs allow the fast, reliable detection and differentiation of the two paralog groups from each other and other IMPases. Conclusion The kinetic data obtained for HisN from C. glutamicum, as an example for an IMPase-like HolPases, shows remarkable differences in enzyme properties as compared to HAD- or PHP-type HolPases. The six sequence motifs and the HMMs presented in this study can be used to reliably differentiate between IMPase-like HolPases and IMPase-like proteins with no such activity, with the potential to enhance current and future genome annotations. A phylogenetic analysis reveals that IMPase-like HolPases are not only present in Actinobacteria and plant but can be found in further bacterial phyla, including, among others, Proteobacteria, Chlorobi and Planctomycetes. Keywords
Stichworte
HisN Cg0911 Histidinol-phosphate phosphatase (HolPase) Inositol monophosphatase (IMPase)-like Corynebacterium glutamicum Kinetic data Sequence motifs Phylogenetic analysis
Erscheinungsjahr
2017
Zeitschriftentitel
BMC Microbiology
Band
17
Ausgabe
1
Art.-Nr.
161
ISSN
1471-2180
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2913110

Zitieren

Kulis-Horn R, Rückert C, Kalinowski J, Persicke M. Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond. BMC Microbiology. 2017;17(1): 161.
Kulis-Horn, R., Rückert, C., Kalinowski, J., & Persicke, M. (2017). Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond. BMC Microbiology, 17(1), 161. doi:10.1186/s12866-017-1069-4
Kulis-Horn, Robert, Rückert, Christian, Kalinowski, Jörn, and Persicke, Marcus. 2017. “Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond”. BMC Microbiology 17 (1): 161.
Kulis-Horn, R., Rückert, C., Kalinowski, J., and Persicke, M. (2017). Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond. BMC Microbiology 17:161.
Kulis-Horn, R., et al., 2017. Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond. BMC Microbiology, 17(1): 161.
R. Kulis-Horn, et al., “Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond”, BMC Microbiology, vol. 17, 2017, : 161.
Kulis-Horn, R., Rückert, C., Kalinowski, J., Persicke, M.: Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond. BMC Microbiology. 17, : 161 (2017).
Kulis-Horn, Robert, Rückert, Christian, Kalinowski, Jörn, and Persicke, Marcus. “Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond”. BMC Microbiology 17.1 (2017): 161.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:50Z
MD5 Prüfsumme
3d20ef495636c463459e76d412977a31


1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Identification and structural characterization of a histidinol phosphate phosphatase from Mycobacterium tuberculosis.
Jha B, Kumar D, Sharma A, Dwivedy A, Singh R, Biswal BK., J Biol Chem 293(26), 2018
PMID: 29752410

66 References

Daten bereitgestellt von Europe PubMed Central.

Cell structure and dynamics.
Ridley A, Heald R., Curr. Opin. Cell Biol. 23(1), 2010
PMID: 21190823
Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum.
Kulis-Horn RK, Persicke M, Kalinowski J., Microb Biotechnol 7(1), 2013
PMID: 23617600
Histidine biosynthetic pathway and genes: structure, regulation, and evolution.
Alifano P, Fani R, Lio P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB., Microbiol. Rev. 60(1), 1996
PMID: 8852895
CDD: conserved domains and protein three-dimensional structure.
Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23197659
Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis.
Movahedzadeh F, Wheeler PR, Dinadayala P, Av-Gay Y, Parish T, Daffe M, Stoker NG., BMC Microbiol. 10(), 2010
PMID: 20167072
Molecular evolution of hisB genes.
Brilli M, Fani R., J. Mol. Evol. 58(2), 2004
PMID: 15042344
Structural snapshots of Escherichia coli histidinol phosphate phosphatase along the reaction pathway.
Rangarajan ES, Proteau A, Wagner J, Hung MN, Matte A, Cygler M., J. Biol. Chem. 281(49), 2006
PMID: 16966333
Purification and properties of yeast histidinol phosphate phosphatase.
Millay RH Jr, Houston LL., Biochemistry 12(14), 1973
PMID: 4351203
Structural and mechanistic characterization of L-histidinol phosphate phosphatase from the polymerase and histidinol phosphatase family of proteins.
Ghodge SV, Fedorov AA, Fedorov EV, Hillerich B, Seidel R, Almo SC, Raushel FM., Biochemistry 52(6), 2013
PMID: 23327428
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
Ikeda M, Nakagawa S., Appl. Microbiol. Biotechnol. 62(2-3), 2003
PMID: 12743753
Crystal structure of monofunctional histidinol phosphate phosphatase from Thermus thermophilus HB8.
Omi R, Goto M, Miyahara I, Manzoku M, Ebihara A, Hirotsu K., Biochemistry 46(44), 2007
PMID: 17929834
Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis.
Follmann M, Ochrombel I, Kramer R, Trotschel C, Poetsch A, Ruckert C, Huser A, Persicke M, Seiferling D, Kalinowski J, Marin K., BMC Genomics 10(), 2009
PMID: 20025733
The Hill equation revisited: uses and misuses.
Weiss JN., FASEB J. 11(11), 1997
PMID: 9285481
High-resolution structure of myo-inositol monophosphatase, the putative target of lithium therapy.
Gill R, Mohammed F, Badyal R, Coates L, Erskine P, Thompson D, Cooper J, Gore M, Wood S., Acta Crystallogr. D Biol. Crystallogr. 61(Pt 5), 2005
PMID: 15858264
Cloning, expression, purification, crystallization and X-ray analysis of inositol monophosphatase from Mus musculus and Homo sapiens.
Singh N, Halliday AC, Knight M, Lack NA, Lowe E, Churchill GC., Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68(Pt 10), 2012
PMID: 23027737
The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4.
Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI, Park CJ, Oh HM, Lee JS, Jin SJ, Um HW, Lee HJ, Oh SJ, Kim JY, Kang HL, Lee SY, Lee KJ, Kang HS., Nat. Biotechnol. 23(1), 2004
PMID: 15592456
Draft Genome Sequence of Actinoplanes utahensis NRRL 12052, a Microorganism Involved in Industrial Production of Pharmaceutical Intermediates.
Velasco-Bucheli R, Del Cerro C, Hormigo D, Acebal C, Arroyo M, Garcia JL, de la Mata I., Genome Announc 3(1), 2015
PMID: 25573944
Crystal structure of cbbF from Zymomonas mobilis and its functional implication.
Hwang HJ, Park SY, Kim JS., Biochem. Biophys. Res. Commun. 445(1), 2014
PMID: 24491569
Crystal structure of a dual activity IMPase/FBPase (AF2372) from Archaeoglobus fulgidus. The story of a mobile loop.
Stieglitz KA, Johnson KA, Yang H, Roberts MF, Seaton BA, Head JF, Stec B., J. Biol. Chem. 277(25), 2002
PMID: 11940584
VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants.
Torabinejad J, Donahue JL, Gunesekera BN, Allen-Daniels MJ, Gillaspy GE., Plant Physiol. 150(2), 2009
PMID: 19339506
Properties of a constitutive alkaline phosphatase from strain 74A of the mold Neurospora crassa.
Morales AC, Nozawa SR, Thedei G Jr, Maccheroni W Jr, Rossi A., Braz. J. Med. Biol. Res. 33(8), 2000
PMID: 10920432
Galactose-derived phosphonate analogues as potential inhibitors of phosphatidylinositol biosynthesis in mycobacteria.
Dinev Z, Gannon CT, Egan C, Watt JA, McConville MJ, Williams SJ., Org. Biomol. Chem. 5(6), 2007
PMID: 17340011
Phosphatidylinositol is an essential phospholipid of mycobacteria.
Jackson M, Crick DC, Brennan PJ., J. Biol. Chem. 275(39), 2000
PMID: 10889206
Rv2131c from Mycobacterium tuberculosis is a CysQ 3'-phosphoadenosine-5'-phosphatase.
Hatzios SK, Iavarone AT, Bertozzi CR., Biochemistry 47(21), 2008
PMID: 18454554
Sulfur metabolism and its regulation
Lee H., 2005
Positive allosteric feedback regulation of the stringent response enzyme RelA by its product.
Shyp V, Tankov S, Ermakov A, Kudrin P, English BP, Ehrenberg M, Tenson T, Elf J, Hauryliuk V., EMBO Rep. 13(9), 2012
PMID: 22814757
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
Taxonomic study of glutamic acid accumulating bacteria, Micrococcus glutamicus, nov. sp
Kinoshita S, Nakayama S, Akita S., 1958
Taxonomical studies on glutamic acid-producing bacteria
Abe S, Takayama K, Kinoshita S., 1967
Protoplast transformation of glutamate-producing bacteria with plasmid DNA.
Katsumata R, Ozaki A, Oka T, Furuya A., J. Bacteriol. 159(1), 1984
PMID: 6145700

Schrimpf G., 2002
Enzymatic assembly of overlapping DNA fragments.
Gibson DG., Meth. Enzymol. 498(), 2011
PMID: 21601685
High efficiency transformation of Escherichia coli with plasmids.
Inoue H, Nojima H, Okayama H., Gene 96(1), 1990
PMID: 2265755
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
In vitro synthesis of novel genes. Mutagenesis and recombination by PCR
Vallejo AN, Pogulis RJ, Pease LR., 1994
The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism.
Wehmeier L, Schafer A, Burkovski A, Kramer R, Mechold U, Malke H, Puhler A, Kalinowski J., Microbiology (Reading, Engl.) 144 ( Pt 7)(), 1998
PMID: 9695918

AUTHOR UNKNOWN, 0
[147] Enzymes and intermediates of histidine biosynthesis in Salmonella typhimurium
Martin RG, Berberich MA, Ames BN, Davis WW, Goldberger RF, Yourno JD., 1971
Inorganic and organic phosphate measurements in the nanomolar range.
Van Veldhoven PP, Mannaerts GP., Anal. Biochem. 161(1), 1987
PMID: 3578786
BLAST+: architecture and applications.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL., BMC Bioinformatics 10(), 2009
PMID: 20003500
The EMBL-EBI bioinformatics web and programmatic tools framework.
Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R., Nucleic Acids Res. 43(W1), 2015
PMID: 25845596
HMMER web server: 2015 update.
Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR., Nucleic Acids Res. 43(W1), 2015
PMID: 25943547
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120
Presenting your structures: the CCP4mg molecular-graphics software.
McNicholas S, Potterton E, Wilson KS, Noble ME., Acta Crystallogr. D Biol. Crystallogr. 67(Pt 4), 2011
PMID: 21460457
PIC: Protein Interactions Calculator.
Tina KG, Bhadra R, Srinivasan N., Nucleic Acids Res. 35(Web Server issue), 2007
PMID: 17584791
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28720084
PubMed | Europe PMC

Suchen in

Google Scholar