Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy

Boehm K, Meyer F, Rhomberg A, Kalinowski J, Donovan C, Bramkamp M (2017)
MBIO 8(3): e00511-17.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Boehm, Kati; Meyer, Fabian; Rhomberg, Agata; Kalinowski, JörnUniBi; Donovan, Catriona; Bramkamp, Marc
Abstract / Bemerkung
Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth ratedependent cell cycle models for C. glutamicum. IMPORTANCE Bacterial cell cycles are known for few model organisms and can vary significantly between species. Here, we studied the cell cycle of Corynebacterium glutamicum, an emerging cell biological model organism for mycolic acidcontaining bacteria, including mycobacteria. Our data suggest that C. glutamicum carries two pole-attached chromosomes that replicate with overlapping C periods, thus initiating a new round of DNA replication before the previous one is terminated. The newly replicated origins segregate to midcell positions, where cell division occurs between the two new origins. Even after long starvation or under extremely slow-growth conditions, C. glutamicum cells are at least diploid, likely as an adaptation to environmental stress that may cause DNA damage. The cell cycle of C. glutamicum combines features of slow-growing organisms, such as polar origin localization, and fast-growing organisms, such as overlapping C periods.
Stichworte
Corynebacterium; ParA; ParB; cell cycle; diploidy; origin; replication
Erscheinungsjahr
2017
Zeitschriftentitel
MBIO
Band
8
Ausgabe
3
Art.-Nr.
e00511-17
ISSN
2150-7511
Page URI
https://pub.uni-bielefeld.de/record/2912983

Zitieren

Boehm K, Meyer F, Rhomberg A, Kalinowski J, Donovan C, Bramkamp M. Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy. MBIO. 2017;8(3): e00511-17.
Boehm, K., Meyer, F., Rhomberg, A., Kalinowski, J., Donovan, C., & Bramkamp, M. (2017). Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy. MBIO, 8(3), e00511-17. doi:10.1128/mBio.00511-17
Boehm, Kati, Meyer, Fabian, Rhomberg, Agata, Kalinowski, Jörn, Donovan, Catriona, and Bramkamp, Marc. 2017. “Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy”. MBIO 8 (3): e00511-17.
Boehm, K., Meyer, F., Rhomberg, A., Kalinowski, J., Donovan, C., and Bramkamp, M. (2017). Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy. MBIO 8:e00511-17.
Boehm, K., et al., 2017. Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy. MBIO, 8(3): e00511-17.
K. Boehm, et al., “Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy”, MBIO, vol. 8, 2017, : e00511-17.
Boehm, K., Meyer, F., Rhomberg, A., Kalinowski, J., Donovan, C., Bramkamp, M.: Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy. MBIO. 8, : e00511-17 (2017).
Boehm, Kati, Meyer, Fabian, Rhomberg, Agata, Kalinowski, Jörn, Donovan, Catriona, and Bramkamp, Marc. “Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy”. MBIO 8.3 (2017): e00511-17.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Regulated ploidy of Bacillus subtilis and three new isolates of Bacillus and Paenibacillus.
Böttinger B, Semmler F, Zerulla K, Ludt K, Soppa J., FEMS Microbiol Lett 365(4), 2018
PMID: 29315386
The Origin of Chromosomal Replication Is Asymmetrically Positioned on the Mycobacterial Nucleoid, and the Timing of Its Firing Depends on HupB.
Hołówka J, Trojanowski D, Janczak M, Jakimowicz D, Zakrzewska-Czerwińska J., J Bacteriol 200(10), 2018
PMID: 29531181
Activation of the mismatch-specific endonuclease EndoMS/NucS by the replication clamp is required for high fidelity DNA replication.
Ishino S, Skouloubris S, Kudo H, l'Hermitte-Stead C, Es-Sadik A, Lambry JC, Ishino Y, Myllykallio H., Nucleic Acids Res 46(12), 2018
PMID: 29846672
Where and When Bacterial Chromosome Replication Starts: A Single Cell Perspective.
Trojanowski D, Hołówka J, Zakrzewska-Czerwińska J., Front Microbiol 9(), 2018
PMID: 30534115

94 References

Daten bereitgestellt von Europe PubMed Central.

Organization and segregation of bacterial chromosomes.
Wang X, Montero Llopis P, Rudner DZ., Nat. Rev. Genet. 14(3), 2013
PMID: 23400100
Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin.
Quon KC, Yang B, Domian IJ, Shapiro L, Marczynski GT., Proc. Natl. Acad. Sci. U.S.A. 95(1), 1998
PMID: 9419339
A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator.
McGrath PT, Iniesta AA, Ryan KR, Shapiro L, McAdams HH., Cell 124(3), 2006
PMID: 16469700
SeqA: a negative modulator of replication initiation in E. coli.
Lu M, Campbell JL, Boye E, Kleckner N., Cell 77(3), 1994
PMID: 8011018
SeqA blocking of DnaA-oriC interactions ensures staged assembly of the E. coli pre-RC.
Nievera C, Torgue JJ, Grimwade JE, Leonard AC., Mol. Cell 24(4), 2006
PMID: 17114060
A Replisome's journey through the bacterial chromosome.
Beattie TR, Reyes-Lamothe R., Front Microbiol 6(), 2015
PMID: 26097470
Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC.
Katayama T, Ozaki S, Keyamura K, Fujimitsu K., Nat. Rev. Microbiol. 8(3), 2010
PMID: 20157337
Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12.
Blakely G, May G, McCulloch R, Arciszewska LK, Burke M, Lovett ST, Sherratt DJ., Cell 75(2), 1993
PMID: 8402918
Movement of replicating DNA through a stationary replisome.
Lemon KP, Grossman AD., Mol. Cell 6(6), 2000
PMID: 11163206
A moving DNA replication factory in Caulobacter crescentus.
Jensen RB, Wang SC, Shapiro L., EMBO J. 20(17), 2001
PMID: 11532959
Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria.
Santi I, Dhar N, Bousbaine D, Wakamoto Y, McKinney JD., Nat Commun 4(), 2013
PMID: 24036848
Chromosome replication and the division cycle of Escherichia coli B/r.
Cooper S, Helmstetter CE., J. Mol. Biol. 31(3), 1968
PMID: 4866337
Symmetric replication of the Bacillus subtilis chromosome.
Quinn WG, Sueoka N., Proc. Natl. Acad. Sci. U.S.A. 67(2), 1970
PMID: 5002094
Replication patterns and organization of replication forks in Vibrio cholerae.
Stokke C, Waldminghaus T, Skarstad K., Microbiology (Reading, Engl.) 157(Pt 3), 2010
PMID: 21163839
Metabolism, cell growth and the bacterial cell cycle.
Wang JD, Levin PA., Nat. Rev. Microbiol. 7(11), 2009
PMID: 19806155
Extreme polyploidy in a large bacterium.
Mendell JE, Clements KD, Choat JH, Angert ER., Proc. Natl. Acad. Sci. U.S.A. 105(18), 2008
PMID: 18445653
Characterization of Azotobacter vinelandii deoxyribonucleic acid and folded chromosomes.
Sadoff HL, Shimel B, Ellis S., J. Bacteriol. 138(3), 1979
PMID: 378943
Multiple chromosomes of Azotobacter vinelandii.
Nagpal P, Jafri S, Reddy MA, Das HK., J. Bacteriol. 171(6), 1989
PMID: 2785985
Ploidy in cyanobacteria.
Griese M, Lange C, Soppa J., FEMS Microbiol. Lett. 323(2), 2011
PMID: 22092711
Genome copy numbers and gene conversion in methanogenic archaea.
Hildenbrand C, Stock T, Lange C, Rother M, Soppa J., J. Bacteriol. 193(3), 2010
PMID: 21097629
The MG1363 and IL1403 laboratory strains of Lactococcus lactis and several dairy strains are diploid.
Michelsen O, Hansen FG, Albrechtsen B, Jensen PR., J. Bacteriol. 192(4), 2009
PMID: 20023021
The two Escherichia coli chromosome arms locate to separate cell halves.
Wang X, Liu X, Possoz C, Sherratt DJ., Genes Dev. 20(13), 2006
PMID: 16818605
Localization of replication forks in wild-type and mukB mutant cells of Escherichia coli.
Adachi S, Kohiyama M, Onogi T, Hiraga S., Mol. Genet. Genomics 274(3), 2005
PMID: 16133165
Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication.
Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, Shapiro L., Proc. Natl. Acad. Sci. U.S.A. 101(25), 2004
PMID: 15178755
Distinct segregation dynamics of the two Vibrio cholerae chromosomes.
Fogel MA, Waldor MK., Mol. Microbiol. 55(1), 2005
PMID: 15612922
A dynamic, mitotic-like mechanism for bacterial chromosome segregation.
Fogel MA, Waldor MK., Genes Dev. 20(23), 2006
PMID: 17158745
Chromosomal organization and segregation in Pseudomonas aeruginosa.
Vallet-Gely I, Boccard F., PLoS Genet. 9(5), 2013
PMID: 23658532
A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole.
Bowman GR, Comolli LR, Zhu J, Eckart M, Koenig M, Downing KH, Moerner WE, Earnest T, Shapiro L., Cell 134(6), 2008
PMID: 18805088
A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole.
Yamaichi Y, Bruckner R, Ringgaard S, Moll A, Cameron DE, Briegel A, Jensen GJ, Davis BM, Waldor MK., Genes Dev. 26(20), 2012
PMID: 23070816
Bacillus subtilis chromosome organization oscillates between two distinct patterns.
Wang X, Montero Llopis P, Rudner DZ., Proc. Natl. Acad. Sci. U.S.A. 111(35), 2014
PMID: 25071173
Distribution of centromere-like parS sites in bacteria: insights from comparative genomics.
Livny J, Yamaichi Y, Waldor MK., J. Bacteriol. 189(23), 2007
PMID: 17905987
Plasmid segregation by a moving ATPase gradient.
Kiekebusch D, Thanbichler M., Proc. Natl. Acad. Sci. U.S.A. 111(13), 2014
PMID: 24707041
The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites.
Murray H, Ferreira H, Errington J., Mol. Microbiol. 61(5), 2006
PMID: 16925562
ParB spreading requires DNA bridging.
Graham TG, Wang X, Song D, Etson CM, van Oijen AM, Rudner DZ, Loparo JJ., Genes Dev. 28(11), 2014
PMID: 24829297
A spindle-like apparatus guides bacterial chromosome segregation.
Ptacin JL, Lee SF, Garner EC, Toro E, Eckart M, Comolli LR, Moerner WE, Shapiro L., Nat. Cell Biol. 12(8), 2010
PMID: 20657594
Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation.
Lim HC, Surovtsev IV, Beltran BG, Huang F, Bewersdorf J, Jacobs-Wagner C., Elife 3(), 2014
PMID: 24859756
ParA-mediated plasmid partition driven by protein pattern self-organization.
Hwang LC, Vecchiarelli AG, Han YW, Mizuuchi M, Harada Y, Funnell BE, Mizuuchi K., EMBO J. 32(9), 2013
PMID: 23443047
Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism.
Vecchiarelli AG, Hwang LC, Mizuuchi K., Proc. Natl. Acad. Sci. U.S.A. 110(15), 2013
PMID: 23479605
Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth.
Lewis RA, Bignell CR, Zeng W, Jones AC, Thomas CM., Microbiology (Reading, Engl.) 148(Pt 2), 2002
PMID: 11832517
Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum.
Donovan C, Schwaiger A, Kramer R, Bramkamp M., J. Bacteriol. 192(13), 2010
PMID: 20435732
Characterization of the mycobacterial chromosome segregation protein ParB and identification of its target in Mycobacterium smegmatis.
Jakimowicz D, Brzostek A, Rumijowska-Galewicz A, Zydek P, Dolzblasz A, Smulczyk-Krawczyszyn A, Zimniak T, Wojtasz L, Zawilak-Pawlik A, Kois A, Dziadek J, Zakrzewska-Czerwinska J., Microbiology (Reading, Engl.) 153(Pt 12), 2007
PMID: 18048919
ParA of Mycobacterium smegmatis co-ordinates chromosome segregation with the cell cycle and interacts with the polar growth determinant DivIVA.
Ginda K, Bezulska M, Ziolkiewicz M, Dziadek J, Zakrzewska-Czerwinska J, Jakimowicz D., Mol. Microbiol. 87(5), 2013
PMID: 23289458
The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus.
Mohl DA, Easter J Jr, Gober JW., Mol. Microbiol. 42(3), 2001
PMID: 11722739

AUTHOR UNKNOWN, 2016
Updates on industrial production of amino acids using Corynebacterium glutamicum.
Wendisch VF, Jorge JMP, Perez-Garcia F, Sgobba E., World J. Microbiol. Biotechnol. 32(6), 2016
PMID: 27116971
A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria.
Donovan C, Sieger B, Kramer R, Bramkamp M., Mol. Microbiol. 84(1), 2012
PMID: 22340668
Cell division in Corynebacterineae.
Donovan C, Bramkamp M., Front Microbiol 5(), 2014
PMID: 24782835
Tracking of chromosome and replisome dynamics in Myxococcus xanthus reveals a novel chromosome arrangement.
Harms A, Treuner-Lange A, Schumacher D, Sogaard-Andersen L., PLoS Genet. 9(9), 2013
PMID: 24068967
Choreography of the Mycobacterium replication machinery during the cell cycle.
Trojanowski D, Ginda K, Pioro M, Holowka J, Skut P, Jakimowicz D, Zakrzewska-Czerwinska J., MBio 6(1), 2015
PMID: 25691599
The lipid II flippase RodA determines morphology and growth in Corynebacterium glutamicum.
Sieger B, Schubert K, Donovan C, Bramkamp M., Mol. Microbiol. 90(5), 2013
PMID: 24118443
Cell size and the initiation of DNA replication in bacteria.
Hill NS, Kadoya R, Chattoraj DK, Levin PA., PLoS Genet. 8(3), 2012
PMID: 22396664
Bacterial chromosome organization and segregation.
Badrinarayanan A, Le TB, Laub MT., Annu. Rev. Cell Dev. Biol. 31(), 2015
PMID: 26566111
The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation.
Jensen RB, Shapiro L., Proc. Natl. Acad. Sci. U.S.A. 96(19), 1999
PMID: 10485882
Monitoring of population dynamics of Corynebacterium glutamicum by multiparameter flow cytometry.
Neumeyer A, Hubschmann T, Muller S, Frunzke J., Microb Biotechnol 6(2), 2012
PMID: 23279937
Desiccation tolerance of prokaryotes.
Potts M., Microbiol. Rev. 58(4), 1994
PMID: 7854254
Impact of improved potassium accumulation on pH homeostasis, membrane potential adjustment and survival of Corynebacterium glutamicum.
Ochrombel I, Ott L, Kramer R, Burkovski A, Marin K., Biochim. Biophys. Acta 1807(4), 2011
PMID: 21295539
Survival of freeze-dried bacteria.
Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T., J. Gen. Appl. Microbiol. 54(1), 2008
PMID: 18323678
Long-term preservation of microbial ecosystems in permafrost.
Gilichinsky DA, Vorobyova EA, Erokhina LG, Fyordorov-Davydov DG, Chaikovskaya NR, Fyordorov-Dayvdov DG., Adv Space Res 12(4), 1992
PMID: 11538146
Molecular and biochemical characterization of mechanosensitive channels in Corynebacterium glutamicum.
Nottebrock D, Meyer U, Kramer R, Morbach S., FEMS Microbiol. Lett. 218(2), 2003
PMID: 12586408
Fiji: an open-source platform for biological-image analysis.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A., Nat. Methods 9(7), 2012
PMID: 22743772
Quantification on the LightCycler
Rasmussen R., 2001
Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes.
Hammes F, Berney M, Wang Y, Vital M, Koster O, Egli T., Water Res. 42(1-2), 2007
PMID: 17659762

AUTHOR UNKNOWN, 2014
Synchronous replication initiation in novel Mycobacterium tuberculosis dnaA cold-sensitive mutants.
Nair N, Dziedzic R, Greendyke R, Muniruzzaman S, Rajagopalan M, Madiraju MV., Mol. Microbiol. 71(2), 2008
PMID: 19019143
DNA cycle of Myxococcus xanthus.
Zusman D, Rosenberg E., J. Mol. Biol. 49(3), 1970
PMID: 5453346
Chromosome replication and the division cycle of Escherichia coli B-r.
Kubitschek HE, Freedman ML., J. Bacteriol. 107(1), 1971
PMID: 4935333
Precise determinations of C and D periods by flow cytometry in Escherichia coli K-12 and B/r.
Michelsen O, Teixeira de Mattos MJ, Jensen PR, Hansen FG., Microbiology (Reading, Engl.) 149(Pt 4), 2003
PMID: 12686642
Real-time single-molecule observation of rolling-circle DNA replication.
Tanner NA, Loparo JJ, Hamdan SM, Jergic S, Dixon NE, van Oijen AM., Nucleic Acids Res. 37(4), 2009
PMID: 19155275
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28588128
PubMed | Europe PMC

Suchen in

Google Scholar