Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus
Stark H, Wolf J, Albersmeier A, Pham TK, Hofmann JD, Siebers B, Kalinowski J, Wright PC, Neumann-Schaal M, Schomburg D (2017)
FEBS JOURNAL 284(13): 2078-2095.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Stark, Helge;
Wolf, Jacqueline;
Albersmeier, AndreasUniBi;
Pham, Trong K.;
Hofmann, Julia D.;
Siebers, Bettina;
Kalinowski, JörnUniBi;
Wright, Phillip C.;
Neumann-Schaal, Meina;
Schomburg, Dietmar
Abstract / Bemerkung
The thermoacidophilic Crenarchaeon Sulfolobus solfataricus is a model organism for archaeal adaptation to extreme environments and renowned for its ability to degrade a broad variety of substrates. It has been well characterised concerning the utilisation of numerous carbohydrates as carbon source. However, its amino acid metabolism, especially the degradation of single amino acids, is not as well understood. In this work, we performed metabolic modelling as well as metabolome, transcriptome and proteome analysis on cells grown on caseinhydrolysate as carbon source in order to draw a comprehensive picture of amino acid metabolism in S. solfataricus P2. We found that 10 out of 16 detectable amino acids are imported from the growth medium. Overall, uptake of glutamate, methionine, leucine, phenylalanine and isoleucine was the highest of all observed amino acids. Our simulations predict an incomplete degradation of leucine and tyrosine to organic acids, and in accordance with this, we detected the export of branched-chain and aromatic organic acids as well as amino acids, ammonium and trehalose into the culture supernatants. The branched-chain amino acids as well as phenylalanine and tyrosine are degraded to organic acids via oxidative Stickland reactions. Such reactions are known for prokaryotes capable of anaerobic growth, but so far have never been observed in an obligate aerobe. Also, 3-methyl-2-butenoate and 2-methyl-2-butenoate are for the first time found as products of modified Stickland reactions for the degradation of branched-chain amino acids. This work presents the first detailed description of branched-chain and aromatic amino acid catabolism in S. solfataricus.
Stichworte
amino acid degradation;
biological model;
Stickland reactions;
Sulfolobus;
systems biology
Erscheinungsjahr
2017
Zeitschriftentitel
FEBS JOURNAL
Band
284
Ausgabe
13
Seite(n)
2078-2095
ISSN
1742-464X
eISSN
1742-4658
Page URI
https://pub.uni-bielefeld.de/record/2912973
Zitieren
Stark H, Wolf J, Albersmeier A, et al. Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus. FEBS JOURNAL. 2017;284(13):2078-2095.
Stark, H., Wolf, J., Albersmeier, A., Pham, T. K., Hofmann, J. D., Siebers, B., Kalinowski, J., et al. (2017). Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus. FEBS JOURNAL, 284(13), 2078-2095. doi:10.1111/febs.14105
Stark, Helge, Wolf, Jacqueline, Albersmeier, Andreas, Pham, Trong K., Hofmann, Julia D., Siebers, Bettina, Kalinowski, Jörn, Wright, Phillip C., Neumann-Schaal, Meina, and Schomburg, Dietmar. 2017. “Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus”. FEBS JOURNAL 284 (13): 2078-2095.
Stark, H., Wolf, J., Albersmeier, A., Pham, T. K., Hofmann, J. D., Siebers, B., Kalinowski, J., Wright, P. C., Neumann-Schaal, M., and Schomburg, D. (2017). Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus. FEBS JOURNAL 284, 2078-2095.
Stark, H., et al., 2017. Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus. FEBS JOURNAL, 284(13), p 2078-2095.
H. Stark, et al., “Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus”, FEBS JOURNAL, vol. 284, 2017, pp. 2078-2095.
Stark, H., Wolf, J., Albersmeier, A., Pham, T.K., Hofmann, J.D., Siebers, B., Kalinowski, J., Wright, P.C., Neumann-Schaal, M., Schomburg, D.: Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus. FEBS JOURNAL. 284, 2078-2095 (2017).
Stark, Helge, Wolf, Jacqueline, Albersmeier, Andreas, Pham, Trong K., Hofmann, Julia D., Siebers, Bettina, Kalinowski, Jörn, Wright, Phillip C., Neumann-Schaal, Meina, and Schomburg, Dietmar. “Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus”. FEBS JOURNAL 284.13 (2017): 2078-2095.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
4 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
The Impact of Pyroglutamate: Sulfolobus acidocaldarius Has a Growth Advantage over Saccharolobus solfataricus in Glutamate-Containing Media.
Vetter AM, Helmecke J, Schomburg D, Neumann-Schaal M., Archaea 2019(), 2019
PMID: 31178666
Vetter AM, Helmecke J, Schomburg D, Neumann-Schaal M., Archaea 2019(), 2019
PMID: 31178666
Kinetic modeling of Stickland reactions-coupled methanogenesis for a methanogenic culture.
Sangavai C, Bharathi M, Ganesh SP, Chellapandi P., AMB Express 9(1), 2019
PMID: 31183623
Sangavai C, Bharathi M, Ganesh SP, Chellapandi P., AMB Express 9(1), 2019
PMID: 31183623
Early Response of Sulfolobus acidocaldarius to Nutrient Limitation.
Bischof LF, Haurat MF, Hoffmann L, Albersmeier A, Wolf J, Neu A, Pham TK, Albaum SP, Jakobi T, Schouten S, Neumann-Schaal M, Wright PC, Kalinowski J, Siebers B, Albers SV., Front Microbiol 9(), 2018
PMID: 30687244
Bischof LF, Haurat MF, Hoffmann L, Albersmeier A, Wolf J, Neu A, Pham TK, Albaum SP, Jakobi T, Schouten S, Neumann-Schaal M, Wright PC, Kalinowski J, Siebers B, Albers SV., Front Microbiol 9(), 2018
PMID: 30687244
Sulfolobus - A Potential Key Organism in Future Biotechnology.
Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O., Front Microbiol 8(), 2017
PMID: 29312184
Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O., Front Microbiol 8(), 2017
PMID: 29312184
63 References
Daten bereitgestellt von Europe PubMed Central.
Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius.
de Rosa M, Gambacorta A, Bu'lock JD., J. Gen. Microbiol. 86(1), 1975
PMID: 234504
de Rosa M, Gambacorta A, Bu'lock JD., J. Gen. Microbiol. 86(1), 1975
PMID: 234504
The Sulfolobus-”Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases
Zillig, Arch Microbiol 125(), 1980
Zillig, Arch Microbiol 125(), 1980
Adaptation of Sulfolobus solfataricus on minimal media
Nicolaus, Biotechnol Lett 13(), 1991
Nicolaus, Biotechnol Lett 13(), 1991
The thermophilic archaeon Sulfolobus solfataricus is able to grow on phenol.
Izzo V, Notomista E, Picardi A, Pennacchio F, Di Donato A., Res. Microbiol. 156(5-6), 2005
PMID: 15921893
Izzo V, Notomista E, Picardi A, Pennacchio F, Di Donato A., Res. Microbiol. 156(5-6), 2005
PMID: 15921893
Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus.
De Rosa M, Gambacorta A, Nicolaus B, Giardina P, Poerio E, Buonocore V., Biochem. J. 224(2), 1984
PMID: 6440533
De Rosa M, Gambacorta A, Nicolaus B, Giardina P, Poerio E, Buonocore V., Biochem. J. 224(2), 1984
PMID: 6440533
Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase.
Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson MJ., J. Biol. Chem. 278(36), 2003
PMID: 12824170
Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson MJ., J. Biol. Chem. 278(36), 2003
PMID: 12824170
Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains.
Grogan DW., J. Bacteriol. 171(12), 1989
PMID: 2512283
Grogan DW., J. Bacteriol. 171(12), 1989
PMID: 2512283
Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment.
Brouns SJ, Walther J, Snijders AP, van de Werken HJ, Willemen HL, Worm P, de Vos MG, Andersson A, Lundgren M, Mazon HF, van den Heuvel RH, Nilsson P, Salmon L, de Vos WM, Wright PC, Bernander R, van der Oost J., J. Biol. Chem. 281(37), 2006
PMID: 16849334
Brouns SJ, Walther J, Snijders AP, van de Werken HJ, Willemen HL, Worm P, de Vos MG, Andersson A, Lundgren M, Mazon HF, van den Heuvel RH, Nilsson P, Salmon L, de Vos WM, Wright PC, Bernander R, van der Oost J., J. Biol. Chem. 281(37), 2006
PMID: 16849334
Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius.
Nunn CE, Johnsen U, Schonheit P, Fuhrer T, Sauer U, Hough DW, Danson MJ., J. Biol. Chem. 285(44), 2010
PMID: 20736170
Nunn CE, Johnsen U, Schonheit P, Fuhrer T, Sauer U, Hough DW, Danson MJ., J. Biol. Chem. 285(44), 2010
PMID: 20736170
A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose.
Wolf J, Stark H, Fafenrot K, Albersmeier A, Pham TK, Muller KB, Meyer BH, Hoffmann L, Shen L, Albaum SP, Kouril T, Schmidt-Hohagen K, Neumann-Schaal M, Brasen C, Kalinowski J, Wright PC, Albers SV, Schomburg D, Siebers B., Mol. Microbiol. 102(5), 2016
PMID: 27611014
Wolf J, Stark H, Fafenrot K, Albersmeier A, Pham TK, Muller KB, Meyer BH, Hoffmann L, Shen L, Albaum SP, Kouril T, Schmidt-Hohagen K, Neumann-Schaal M, Brasen C, Kalinowski J, Wright PC, Albers SV, Schomburg D, Siebers B., Mol. Microbiol. 102(5), 2016
PMID: 27611014
2-Propanol degradation by Sulfolobus solfataricus.
Radianingtyas H, Wright PC., Biotechnol. Lett. 25(7), 2003
PMID: 12882148
Radianingtyas H, Wright PC., Biotechnol. Lett. 25(7), 2003
PMID: 12882148
Proteome analysis of Sulfolobus solfataricus P2 propanol metabolism.
Chong PK, Burja AM, Radianingtyas H, Fazeli A, Wright PC., J. Proteome Res. 6(4), 2007
PMID: 17315908
Chong PK, Burja AM, Radianingtyas H, Fazeli A, Wright PC., J. Proteome Res. 6(4), 2007
PMID: 17315908
Identification and molecular characterization of an endoglucanase gene, celS, from the extremely thermophilic archaeon Sulfolobus solfataricus.
Limauro D, Cannio R, Fiorentino G, Rossi M, Bartolucci S., Extremophiles 5(4), 2001
PMID: 11523890
Limauro D, Cannio R, Fiorentino G, Rossi M, Bartolucci S., Extremophiles 5(4), 2001
PMID: 11523890
Effects of exogenous compatible solutes on growth of the hyperthermophilic archaeon Sulfolobus solfataricus.
Park CB, Lee SB., J. Biosci. Bioeng. 89(4), 2000
PMID: 16232752
Park CB, Lee SB., J. Biosci. Bioeng. 89(4), 2000
PMID: 16232752
Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature
Brock, Arch Für Mikrobiol 84(), 1972
Brock, Arch Für Mikrobiol 84(), 1972
Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis.
Yokooji Y, Sato T, Fujiwara S, Imanaka T, Atomi H., J. Bacteriol. 195(9), 2013
PMID: 23435976
Yokooji Y, Sato T, Fujiwara S, Imanaka T, Atomi H., J. Bacteriol. 195(9), 2013
PMID: 23435976
Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea.
Heider J, Mai X, Adams MW., J. Bacteriol. 178(3), 1996
PMID: 8550513
Heider J, Mai X, Adams MW., J. Bacteriol. 178(3), 1996
PMID: 8550513
The complete genome of the crenarchaeon Sulfolobus solfataricus P2.
She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J., Proc. Natl. Acad. Sci. U.S.A. 98(14), 2001
PMID: 11427726
She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J., Proc. Natl. Acad. Sci. U.S.A. 98(14), 2001
PMID: 11427726
The glutamic acid-pyrrolidonecarboxylic acid system
Wilson, J Biol Chem 119(), 1937
Wilson, J Biol Chem 119(), 1937
Inhibitory effect of L-pyroglutamate on extremophiles: correlation with growth temperature and pH.
Park CB, Ryu DD, Lee SB., FEMS Microbiol. Lett. 221(2), 2003
PMID: 12725925
Park CB, Ryu DD, Lee SB., FEMS Microbiol. Lett. 221(2), 2003
PMID: 12725925
Amino acid degradation by anaerobic bacteria.
Barker HA., Annu. Rev. Biochem. 50(), 1981
PMID: 6791576
Barker HA., Annu. Rev. Biochem. 50(), 1981
PMID: 6791576
Studies in the metabolism of the strict anaerobes (genus Clostridium): The chemical reactions by which Cl. sporogenes obtains its energy.
Stickland LH., Biochem. J. 28(5), 1934
PMID: 16745572
Stickland LH., Biochem. J. 28(5), 1934
PMID: 16745572
Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus.
Mai X, Adams MW., J. Bacteriol. 178(20), 1996
PMID: 8830684
Mai X, Adams MW., J. Bacteriol. 178(20), 1996
PMID: 8830684
Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus.
Ulas T, Riemer SA, Zaparty M, Siebers B, Schomburg D., PLoS ONE 7(8), 2012
PMID: 22952675
Ulas T, Riemer SA, Zaparty M, Siebers B, Schomburg D., PLoS ONE 7(8), 2012
PMID: 22952675
The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus Ferrooxidans
Alexander, Microbiology 133(), 1987
Alexander, Microbiology 133(), 1987
Life in acid: pH homeostasis in acidophiles.
Baker-Austin C, Dopson M., Trends Microbiol. 15(4), 2007
PMID: 17331729
Baker-Austin C, Dopson M., Trends Microbiol. 15(4), 2007
PMID: 17331729
L-pyroglutamate spontaneously formed from L-glutamate inhibits growth of the hyperthermophilic archaeon Sulfolobus solfataricus.
Park CB, Lee SB, Ryu DD., Appl. Environ. Microbiol. 67(8), 2001
PMID: 11472943
Park CB, Lee SB, Ryu DD., Appl. Environ. Microbiol. 67(8), 2001
PMID: 11472943
Another extreme genome: how to live at pH 0.
Ciaramella M, Napoli A, Rossi M., Trends Microbiol. 13(2), 2005
PMID: 15680761
Ciaramella M, Napoli A, Rossi M., Trends Microbiol. 13(2), 2005
PMID: 15680761
Growth inhibition of Acidiphilium species by organic acids contained in yeast extract
Kishimoto, J Ferment Bioeng 70(), 1990
Kishimoto, J Ferment Bioeng 70(), 1990
Effect of O2 concentrations on Sulfolobus solfataricus P2.
Simon G, Walther J, Zabeti N, Combet-Blanc Y, Auria R, van der Oost J, Casalot L., FEMS Microbiol. Lett. 299(2), 2009
PMID: 19735462
Simon G, Walther J, Zabeti N, Combet-Blanc Y, Auria R, van der Oost J, Casalot L., FEMS Microbiol. Lett. 299(2), 2009
PMID: 19735462
Energetics of bacterial growth: balance of anabolic and catabolic reactions.
Russell JB, Cook GM., Microbiol. Rev. 59(1), 1995
PMID: 7708012
Russell JB, Cook GM., Microbiol. Rev. 59(1), 1995
PMID: 7708012
Physiological roles of trehalose in bacteria and yeasts: a comparative analysis.
Arguelles JC., Arch. Microbiol. 174(4), 2000
PMID: 11081789
Arguelles JC., Arch. Microbiol. 174(4), 2000
PMID: 11081789
Biochemical evidence supporting the presence of the classical mevalonate pathway in the thermoacidophilic archaeon Sulfolobus solfataricus.
Nishimura H, Azami Y, Miyagawa M, Hashimoto C, Yoshimura T, Hemmi H., J. Biochem. 153(5), 2013
PMID: 23378249
Nishimura H, Azami Y, Miyagawa M, Hashimoto C, Yoshimura T, Hemmi H., J. Biochem. 153(5), 2013
PMID: 23378249
Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria.
Kim J, Hetzel M, Boiangiu CD, Buckel W., FEMS Microbiol. Rev. 28(4), 2004
PMID: 15374661
Kim J, Hetzel M, Boiangiu CD, Buckel W., FEMS Microbiol. Rev. 28(4), 2004
PMID: 15374661
A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes.
Horner DS, Hirt RP, Embley TM., Mol. Biol. Evol. 16(9), 1999
PMID: 10486982
Horner DS, Hirt RP, Embley TM., Mol. Biol. Evol. 16(9), 1999
PMID: 10486982
Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima.
Kletzin A, Adams MW., J. Bacteriol. 178(1), 1996
PMID: 8550425
Kletzin A, Adams MW., J. Bacteriol. 178(1), 1996
PMID: 8550425
Crystal structures of archaeal 2-oxoacid:ferredoxin oxidoreductases from Sulfolobus tokodaii.
Yan Z, Maruyama A, Arakawa T, Fushinobu S, Wakagi T., Sci Rep 6(), 2016
PMID: 27619895
Yan Z, Maruyama A, Arakawa T, Fushinobu S, Wakagi T., Sci Rep 6(), 2016
PMID: 27619895
2-keto acid oxidoreductases from Pyrococcus furiosus and Thermococcus litoralis.
Schut GJ, Menon AL, Adams MW., Meth. Enzymol. 331(), 2001
PMID: 11265457
Schut GJ, Menon AL, Adams MW., Meth. Enzymol. 331(), 2001
PMID: 11265457
Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.
Awano T, Wilming A, Tomita H, Yokooji Y, Fukui T, Imanaka T, Atomi H., J. Bacteriol. 196(1), 2013
PMID: 24163338
Awano T, Wilming A, Tomita H, Yokooji Y, Fukui T, Imanaka T, Atomi H., J. Bacteriol. 196(1), 2013
PMID: 24163338
Unusual ADP-forming acetyl-coenzyme A synthetases from the mesophilic halophilic euryarchaeon Haloarcula marismortui and from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.
Brasen C, Schonheit P., Arch. Microbiol. 182(4), 2004
PMID: 15340786
Brasen C, Schonheit P., Arch. Microbiol. 182(4), 2004
PMID: 15340786
Purification and properties of acetyl-CoA synthetase (ADP-forming), an archaeal enzyme of acetate formation and ATP synthesis, from the hyperthermophile Pyrococcus furiosus.
Glasemacher J, Bock AK, Schmid R, Schonheit P., Eur. J. Biochem. 244(2), 1997
PMID: 9119024
Glasemacher J, Bock AK, Schmid R, Schonheit P., Eur. J. Biochem. 244(2), 1997
PMID: 9119024
In vitro heat effect on heterooligomeric subunit assembly of thermostable indolepyruvate ferredoxin oxidoreductase.
Siddiqui MA, Fujiwara S, Takagi M, Imanaka T., FEBS Lett. 434(3), 1998
PMID: 9742957
Siddiqui MA, Fujiwara S, Takagi M, Imanaka T., FEBS Lett. 434(3), 1998
PMID: 9742957
Luengo, 2007
Bacterial phenylalanine and phenylacetate catabolic pathway revealed.
Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G., Proc. Natl. Acad. Sci. U.S.A. 107(32), 2010
PMID: 20660314
Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G., Proc. Natl. Acad. Sci. U.S.A. 107(32), 2010
PMID: 20660314
Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence.
Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S., Genome Res. 11(10), 2001
PMID: 11591641
Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S., Genome Res. 11(10), 2001
PMID: 11591641
BRENDA in 2015: exciting developments in its 25th year of existence.
Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M, Xiao M, Sensen CW, Schomburg D., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25378310
Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M, Xiao M, Sensen CW, Schomburg D., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25378310
Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus
Schäfer, Arch Microbiol 155(), 1991
Schäfer, Arch Microbiol 155(), 1991
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Bioenergetics of the Archaea.
Schafer G, Engelhard M, Muller V., Microbiol. Mol. Biol. Rev. 63(3), 1999
PMID: 10477309
Schafer G, Engelhard M, Muller V., Microbiol. Mol. Biol. Rev. 63(3), 1999
PMID: 10477309
The SEEK: a platform for sharing data and models in systems biology.
Wolstencroft K, Owen S, du Preez F, Krebs O, Mueller W, Goble C, Snoep JL., Meth. Enzymol. 500(), 2011
PMID: 21943917
Wolstencroft K, Owen S, du Preez F, Krebs O, Mueller W, Goble C, Snoep JL., Meth. Enzymol. 500(), 2011
PMID: 21943917
Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus.
Consalvi V, Chiaraluce R, Politi L, Gambacorta A, De Rosa M, Scandurra R., Eur. J. Biochem. 196(2), 1991
PMID: 1901040
Consalvi V, Chiaraluce R, Politi L, Gambacorta A, De Rosa M, Scandurra R., Eur. J. Biochem. 196(2), 1991
PMID: 1901040
Purification and properties of an extreme thermostable glutamate dehydrogenase from the archaebacterium Sulfolobus solfataricus.
Schinkinger MF, Redl B, Stoffler G., Biochim. Biophys. Acta 1073(1), 1991
PMID: 1899341
Schinkinger MF, Redl B, Stoffler G., Biochim. Biophys. Acta 1073(1), 1991
PMID: 1899341
Purification and characterization of aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus.
Marino G, Nitti G, Arnone MI, Sannia G, Gambacorta A, De Rosa M., J. Biol. Chem. 263(25), 1988
PMID: 3137225
Marino G, Nitti G, Arnone MI, Sannia G, Gambacorta A, De Rosa M., J. Biol. Chem. 263(25), 1988
PMID: 3137225
Biosynthesis of archaeal membrane ether lipids
Jain, Microb Physiol Metab 5(), 2014
Jain, Microb Physiol Metab 5(), 2014
Unusual enzymes involved in five pathways of glutamate fermentation.
Buckel W., Appl. Microbiol. Biotechnol. 57(3), 2001
PMID: 11759672
Buckel W., Appl. Microbiol. Biotechnol. 57(3), 2001
PMID: 11759672
Time-resolved amino acid uptake of Clostridium difficile 630Δerm and concomitant fermentation product and toxin formation.
Neumann-Schaal M, Hofmann JD, Will SE, Schomburg D., BMC Microbiol. 15(), 2015
PMID: 26680234
Neumann-Schaal M, Hofmann JD, Will SE, Schomburg D., BMC Microbiol. 15(), 2015
PMID: 26680234
"Hot standards" for the thermoacidophilic archaeon Sulfolobus solfataricus.
Zaparty M, Esser D, Gertig S, Haferkamp P, Kouril T, Manica A, Pham TK, Reimann J, Schreiber K, Sierocinski P, Teichmann D, van Wolferen M, von Jan M, Wieloch P, Albers SV, Driessen AJ, Klenk HP, Schleper C, Schomburg D, van der Oost J, Wright PC, Siebers B., Extremophiles 14(1), 2009
PMID: 19802714
Zaparty M, Esser D, Gertig S, Haferkamp P, Kouril T, Manica A, Pham TK, Reimann J, Schreiber K, Sierocinski P, Teichmann D, van Wolferen M, von Jan M, Wieloch P, Albers SV, Driessen AJ, Klenk HP, Schleper C, Schomburg D, van der Oost J, Wright PC, Siebers B., Extremophiles 14(1), 2009
PMID: 19802714
Rapid Analysis of Cocaine in Saliva by Surface-Enhanced Raman Spectroscopy.
Dana K, Shende C, Huang H, Farquharson S., J Anal Bioanal Tech 6(6), 2015
PMID: 26819811
Dana K, Shende C, Huang H, Farquharson S., J Anal Bioanal Tech 6(6), 2015
PMID: 26819811
Native plasmids restrict growth of Phaeobacter inhibens DSM 17395: Energetic costs of plasmids assessed by quantitative physiological analyses.
Trautwein K, Will SE, Hulsch R, Maschmann U, Wiegmann K, Hensler M, Michael V, Ruppersberg H, Wunsch D, Feenders C, Neumann-Schaal M, Kaltenhauser S, Ulbrich M, Schmidt-Hohagen K, Blasius B, Petersen J, Schomburg D, Rabus R., Environ. Microbiol. 18(12), 2016
PMID: 27233797
Trautwein K, Will SE, Hulsch R, Maschmann U, Wiegmann K, Hensler M, Michael V, Ruppersberg H, Wunsch D, Feenders C, Neumann-Schaal M, Kaltenhauser S, Ulbrich M, Schmidt-Hohagen K, Blasius B, Petersen J, Schomburg D, Rabus R., Environ. Microbiol. 18(12), 2016
PMID: 27233797
gamma-Amino-eta-butyric, aspartic, glutamic and pyrrolidonecarboxylic acid; their determination and occurrence in grass during conservation.
MACPHERSON HT, SLATER JS., Biochem. J. 71(4), 1959
PMID: 13651112
MACPHERSON HT, SLATER JS., Biochem. J. 71(4), 1959
PMID: 13651112
Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media.
Hottes AK, Meewan M, Yang D, Arana N, Romero P, McAdams HH, Stephens C., J. Bacteriol. 186(5), 2004
PMID: 14973021
Hottes AK, Meewan M, Yang D, Arana N, Romero P, McAdams HH, Stephens C., J. Bacteriol. 186(5), 2004
PMID: 14973021
Differential expression analysis for sequence count data.
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 28497654
PubMed | Europe PMC
Suchen in