Coarse-Grained Modeling of Protein Second Osmotic Virial Coefficients: Sterics and Short-Ranged Attractions

Grünberger A, Lai P-K, Blanco MA, Roberts CJ (2013)
The Journal of Physical Chemistry B 117(3): 763-770.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Grünberger, AlexanderUniBi; Lai, Pin-Kuang; Blanco, Marco A.; Roberts, Christopher J.
Abstract / Bemerkung
A series of coarse-grained models, with different levels of structural resolution, were tested to calculate the steric contributions to protein osmotic second virial coefficients (B22,S) for proteins ranging from small single-domain molecules to large multidomain molecules, using the recently developed Mayer sampling method. B22,S was compared for different levels of coarse-graining: four-beads-per-amino-acid (4bAA), one-bead-per-amino-acid (1bAA), one-sphere-per-domain (1sD), and one-sphere-per-protein (1sP). Values for the 1bAA and 4bAA models were quantitatively indistinguishable for both spherical and nonspherical proteins, and the agreement with values from all-atom models improved with increasing protein size, making the CG approach attractive for large proteins of biotechnological interest. Interestingly, in the absence of detailed structural information, the hydrodynamic radius (Rh) along with a simple 1sP approximation provided reasonably accurate values for B22,S for both globular and highly asymmetric protein structures, while other 1sP approximations gave poorer agreement; this helps to justify the currently empirical practice of estimating B22,S from Rh for large proteins such as antibodies. The results also indicate that either 1bAA or 4bAA CG models may be good starting points for incorporating short-range attractions. Comparison of gD-crystallin B22 values including both sterics and short-range attractions shows that 1bAA and 4bAA models give equivalent results when properly scaled to account for differences in the number of surface beads in the two CG descriptions. This provides a basis for future work that will also incorporate long-ranged electrostatic attractions and repulsions.
Erscheinungsjahr
2013
Zeitschriftentitel
The Journal of Physical Chemistry B
Band
117
Ausgabe
3
Seite(n)
763-770
ISSN
1520-6106
eISSN
1520-5207
Page URI
https://pub.uni-bielefeld.de/record/2912745

Zitieren

Grünberger A, Lai P-K, Blanco MA, Roberts CJ. Coarse-Grained Modeling of Protein Second Osmotic Virial Coefficients: Sterics and Short-Ranged Attractions. The Journal of Physical Chemistry B. 2013;117(3):763-770.
Grünberger, A., Lai, P. - K., Blanco, M. A., & Roberts, C. J. (2013). Coarse-Grained Modeling of Protein Second Osmotic Virial Coefficients: Sterics and Short-Ranged Attractions. The Journal of Physical Chemistry B, 117(3), 763-770. doi:10.1021/jp308234j
Grünberger, Alexander, Lai, Pin-Kuang, Blanco, Marco A., and Roberts, Christopher J. 2013. “Coarse-Grained Modeling of Protein Second Osmotic Virial Coefficients: Sterics and Short-Ranged Attractions”. The Journal of Physical Chemistry B 117 (3): 763-770.
Grünberger, A., Lai, P. - K., Blanco, M. A., and Roberts, C. J. (2013). Coarse-Grained Modeling of Protein Second Osmotic Virial Coefficients: Sterics and Short-Ranged Attractions. The Journal of Physical Chemistry B 117, 763-770.
Grünberger, A., et al., 2013. Coarse-Grained Modeling of Protein Second Osmotic Virial Coefficients: Sterics and Short-Ranged Attractions. The Journal of Physical Chemistry B, 117(3), p 763-770.
A. Grünberger, et al., “Coarse-Grained Modeling of Protein Second Osmotic Virial Coefficients: Sterics and Short-Ranged Attractions”, The Journal of Physical Chemistry B, vol. 117, 2013, pp. 763-770.
Grünberger, A., Lai, P.-K., Blanco, M.A., Roberts, C.J.: Coarse-Grained Modeling of Protein Second Osmotic Virial Coefficients: Sterics and Short-Ranged Attractions. The Journal of Physical Chemistry B. 117, 763-770 (2013).
Grünberger, Alexander, Lai, Pin-Kuang, Blanco, Marco A., and Roberts, Christopher J. “Coarse-Grained Modeling of Protein Second Osmotic Virial Coefficients: Sterics and Short-Ranged Attractions”. The Journal of Physical Chemistry B 117.3 (2013): 763-770.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biophysical characterization and molecular simulation of electrostatically driven self-association of a single-chain antibody.
O'Brien CJ, Calero-Rubio C, Razinkov VI, Robinson AS, Roberts CJ., Protein Sci 27(7), 2018
PMID: 29637646
Self-Interaction of Human Serum Albumin: A Formulation Perspective.
Sønderby P, Bukrinski JT, Hebditch M, Peters GHJ, Curtis RA, Harris P., ACS Omega 3(11), 2018
PMID: 30556026
A New Mixed All-Atom/Coarse-Grained Model: Application to Melittin Aggregation in Aqueous Solution.
Shelley MY, Selvan ME, Zhao J, Babin V, Liao C, Li J, Shelley JC., J Chem Theory Comput 13(8), 2017
PMID: 28636825
Modulating non-native aggregation and electrostatic protein-protein interactions with computationally designed single-point mutations.
O'Brien CJ, Blanco MA, Costanzo JA, Enterline M, Fernandez EJ, Robinson AS, Roberts CJ., Protein Eng Des Sel 29(6), 2016
PMID: 27160179
Prediction of colloidal stability of high concentration protein formulations.
Garidel P, Blume A, Wagner M., Pharm Dev Technol 20(3), 2015
PMID: 24392929
Aggregate structure, morphology and the effect of aggregation mechanisms on viscosity at elevated protein concentrations.
Barnett GV, Qi W, Amin S, Neil Lewis E, Roberts CJ., Biophys Chem 207(), 2015
PMID: 26284891
Concentration dependence of translational diffusion coefficients for globular proteins.
Scott DJ, Harding SE, Winzor DJ., Analyst 139(23), 2014
PMID: 25306977
Coarse-grained model for colloidal protein interactions, B(22), and protein cluster formation.
Blanco MA, Sahin E, Robinson AS, Roberts CJ., J Phys Chem B 117(50), 2013
PMID: 24289039
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23245189
PubMed | Europe PMC

Suchen in

Google Scholar