Enhanced protein and biochemical production using CRISPRi-based growth switches

Li S, Jendresen CB, Grünberger A, Ronda C, Jensen SI, Noack S, Nielsen AT (2016)
Metabolic Engineering 38: 274-284.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Production of proteins and biochemicals in microbial cell factories is often limited by carbon and energy spent on excess biomass formation. To address this issue, we developed several genetic growth switches based on CRISPR interference technology. We demonstrate that growth of Escherichia coli can be controlled by repressing the DNA replication machinery, by targeting dnaA and oriC, or by blocking nucleotide synthesis through pyrF or thyA. This way, total GFP-protein production could be increased by up to 2.2-fold. Single-cell dynamic tracking in microfluidic systems was used to confirm functionality of the growth switches. Decoupling of growth from production of biochemicals was demonstrated for mevalonate, a precursor for isoprenoid compounds. Mass yield of mevalonate was increased by 41%, and production was maintained for more than 45 h after activation of the pyrF-based growth switch. The developed methods represent a promising approach for increasing production yield and titer for proteins and biochemicals.
Erscheinungsjahr
Zeitschriftentitel
Metabolic Engineering
Band
38
Seite(n)
274-284
ISSN
PUB-ID

Zitieren

Li S, Jendresen CB, Grünberger A, et al. Enhanced protein and biochemical production using CRISPRi-based growth switches. Metabolic Engineering. 2016;38:274-284.
Li, S., Jendresen, C. B., Grünberger, A., Ronda, C., Jensen, S. I., Noack, S., & Nielsen, A. T. (2016). Enhanced protein and biochemical production using CRISPRi-based growth switches. Metabolic Engineering, 38, 274-284. doi:10.1016/j.ymben.2016.09.003
Li, S., Jendresen, C. B., Grünberger, A., Ronda, C., Jensen, S. I., Noack, S., and Nielsen, A. T. (2016). Enhanced protein and biochemical production using CRISPRi-based growth switches. Metabolic Engineering 38, 274-284.
Li, S., et al., 2016. Enhanced protein and biochemical production using CRISPRi-based growth switches. Metabolic Engineering, 38, p 274-284.
S. Li, et al., “Enhanced protein and biochemical production using CRISPRi-based growth switches”, Metabolic Engineering, vol. 38, 2016, pp. 274-284.
Li, S., Jendresen, C.B., Grünberger, A., Ronda, C., Jensen, S.I., Noack, S., Nielsen, A.T.: Enhanced protein and biochemical production using CRISPRi-based growth switches. Metabolic Engineering. 38, 274-284 (2016).
Li, Songyuan, Jendresen, Christian Bille, Grünberger, Alexander, Ronda, Carlotta, Jensen, Sheila Ingemann, Noack, Stephan, and Nielsen, Alex Toftgaard. “Enhanced protein and biochemical production using CRISPRi-based growth switches”. Metabolic Engineering 38 (2016): 274-284.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates.
Dudley QM, Nash CJ, Jewett MC., Synth Biol (Oxf) 4(1), 2019
PMID: 30873438
Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
Cho S, Shin J, Cho BK., Int J Mol Sci 19(4), 2018
PMID: 29621180
CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
Tarasava K, Oh EJ, Eckert CA, Gill RT., Biotechnol J 13(9), 2018
PMID: 29917318
CRISPR-Cas9/Cas12a biotechnology and application in bacteria.
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y., Synth Syst Biotechnol 3(3), 2018
PMID: 30345399
System-level perturbations of cell metabolism using CRISPR/Cas9.
Jakočiūnas T, Jensen MK, Keasling JD., Curr Opin Biotechnol 46(), 2017
PMID: 28365497
CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942.
Huang CH, Shen CR, Li H, Sung LY, Wu MY, Hu YC., Microb Cell Fact 15(1), 2016
PMID: 27846887

28 References

Daten bereitgestellt von Europe PubMed Central.

Production of mevalonate, isoprene, and isoprenoids using genes encoding polypeptides having thiolase, HMG-CoA synthase and HMG-CoA reductase enzymatic activities
Beck, WO2 012149469(), 2012

AUTHOR UNKNOWN, 0
Predictable tuning of protein expression in bacteria.
Bonde MT, Pedersen M, Klausen MS, Jensen SI, Wulff T, Harrison S, Nielsen AT, Herrgard MJ, Sommer MO., Nat. Methods 13(3), 2016
PMID: 26752768
STUDIES ON UNBALANCED GROWTH IN ESCHERICHIA COLI.
Cohen SS, Barner HD., Proc. Natl. Acad. Sci. U.S.A. 40(10), 1954
PMID: 16589586
CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli.
Cress BF, Toparlak OD, Guleria S, Lebovich M, Stieglitz JT, Englaender JA, Jones JA, Linhardt RJ, Koffas MA., ACS Synth Biol 4(9), 2015
PMID: 25822415
Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation
Gruenberger, J. Vis. Exp. (), 2013
A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
Grunberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Noack S, Wiechert W, Kohlheyer D., Lab Chip 12(11), 2012
PMID: 22511122
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform
Grünberger, Cytom. A 87(), 2015
CRISPR interference (CRISPRi) for sequence-specific control of gene expression.
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS., Nat Protoc 8(11), 2013
PMID: 24136345
Systems metabolic engineering of microorganisms for natural and non-natural chemicals.
Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY., Nat. Chem. Biol. 8(6), 2012
PMID: 22596205
Engineering a mevalonate pathway in Escherichia coli for production of terpenoids.
Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD., Nat. Biotechnol. 21(7), 2003
PMID: 12778056
DNA replication initiation: mechanisms and regulation in bacteria.
Mott ML, Berger JM., Nat. Rev. Microbiol. 5(5), 2007
PMID: 17435790
Engineering of high yield production of L-serine in Escherichia coli.
Mundhada H, Schneider K, Christensen HB, Nielsen AT., Biotechnol. Bioeng. 113(4), 2015
PMID: 26416585
Multicopy suppression underpins metabolic evolvability.
Patrick WM, Quandt EM, Swartzlander DB, Matsumura I., Mol. Biol. Evol. 24(12), 2007
PMID: 17884825
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA., Cell 152(5), 2013
PMID: 23452860

AUTHOR UNKNOWN, 0
The Escherichia coli mazEF suicide module mediates thymineless death.
Sat B, Reches M, Engelberg-Kulka H., J. Bacteriol. 185(6), 2003
PMID: 12618443
NIH Image to ImageJ: 25 years of image analysis.
Schneider CA, Rasband WS, Eliceiri KW., Nat. Methods 9(7), 2012
PMID: 22930834
One-step cloning and chromosomal integration of DNA.
St-Pierre F, Cui L, Priest DG, Endy D, Dodd IB, Shearwin KE., ACS Synth Biol 2(9), 2013
PMID: 24050148
Single protein production (SPP) system in Escherichia coli.
Suzuki M, Mao L, Inouye M., Nat Protoc 2(7), 2007
PMID: 17641648
High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli.
Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD., PLoS ONE 4(2), 2009
PMID: 19221601
Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth
von, Biochim. Biophys. Acta Bioenerg. 1412(), 1999

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27647432
PubMed | Europe PMC

Suchen in

Google Scholar