Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level

Westerwalbesloh C, Grünberger A, Wiechert W, Kohlheyer D, von Lieres E (2017)
Microbial Biotechnology 10(4): 845-857.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Microfluidic single-cell bioreactors have found widespread application to investigate growth and gene expression of microbial model organisms, but yet there are few attempts to systematically characterize different design and cultivation concepts. Quantitative measurements of critical solute concentrations, e.g. limiting nutrients, are not yet feasible within the typical volumes in the range of picolitres. A way to gain new insights about the mass transport within those volumes is by simulation, but the complex geometry resulting from the multitude of cells within a colony leads to time and resource consuming computational challenges. In this work, six different concepts for the model representation of cellular microcolonies within microfluidic monolayer growth chamber devices are compared. The Gini coefficient is proposed as new measure for inhomogeneity within cellular colonies. An example cell colony is represented by a single point source, a cylindrical volume with homogeneous reaction rates with and without adjusted diffusion coefficient, as point sources for each single cell and as rod-shaped, diffusion blocking, three-dimensional cells with varying shapes. Simulated concentration profiles across the chambers depended strongly on the chosen cell representation. The representation with the lowest degree of abstraction, three-dimensional cells, leads to complex geometries and high computational effort, but also gives a conservative and therefore preferable estimate for the cultivation conditions within a given cultivation chamber geometry. Interestingly, the cylindrical volume with adjusted diffusion coefficient gives similar results but requires far less computational effort. Therefore, it is proposed to use the three-dimensional cells for detailed studies and to determine parameters for the cylindrical volume with adjusted diffusion coefficient, which can then be used for experimental design, screening of parameter spaces, and similar applications.
Erscheinungsjahr
Zeitschriftentitel
Microbial Biotechnology
Band
10
Ausgabe
4
Seite(n)
845-857
ISSN
PUB-ID

Zitieren

Westerwalbesloh C, Grünberger A, Wiechert W, Kohlheyer D, von Lieres E. Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level. Microbial Biotechnology. 2017;10(4):845-857.
Westerwalbesloh, C., Grünberger, A., Wiechert, W., Kohlheyer, D., & von Lieres, E. (2017). Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level. Microbial Biotechnology, 10(4), 845-857. doi:10.1111/1751-7915.12708
Westerwalbesloh, C., Grünberger, A., Wiechert, W., Kohlheyer, D., and von Lieres, E. (2017). Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level. Microbial Biotechnology 10, 845-857.
Westerwalbesloh, C., et al., 2017. Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level. Microbial Biotechnology, 10(4), p 845-857.
C. Westerwalbesloh, et al., “Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level”, Microbial Biotechnology, vol. 10, 2017, pp. 845-857.
Westerwalbesloh, C., Grünberger, A., Wiechert, W., Kohlheyer, D., von Lieres, E.: Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level. Microbial Biotechnology. 10, 845-857 (2017).
Westerwalbesloh, Christoph, Grünberger, Alexander, Wiechert, Wolfgang, Kohlheyer, Dietrich, and von Lieres, Eric. “Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level”. Microbial Biotechnology 10.4 (2017): 845-857.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips.
Ho P, Westerwalbesloh C, Kaganovitch E, Grünberger A, Neubauer P, Kohlheyer D, Lieres EV., Microorganisms 7(4), 2019
PMID: 31010155
Laboratory-scale photobiotechnology-current trends and future perspectives.
Morschett H, Loomba V, Huber G, Wiechert W, von Lieres E, Oldiges M., FEMS Microbiol Lett 365(1), 2018
PMID: 29126108
Beyond the bulk: disclosing the life of single microbial cells.
Rosenthal K, Oehling V, Dusny C, Schmid A., FEMS Microbiol Rev 41(6), 2017
PMID: 29029257

39 References

Daten bereitgestellt von Europe PubMed Central.

Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids
AUTHOR UNKNOWN, 1994
Densities and viscosities of ternary systems of water + glucose + sodium chloride at several temperatures
AUTHOR UNKNOWN, 2003

AUTHOR UNKNOWN, 2016

AUTHOR UNKNOWN, 1998
Measuring resource inequalities: the concepts and methodology for an area‐based Gini coefficient
AUTHOR UNKNOWN, 2008
Technical bias of microcultivation environments on single-cell physiology.
Dusny C, Grunberger A, Probst C, Wiechert W, Kohlheyer D, Schmid A., Lab Chip 15(8), 2015
PMID: 25710324
Diffusion in supersaturated solutions. II. Glucose solutions
AUTHOR UNKNOWN, 1953
Lorenz Curve and Gini coefficient: novel tools for analysing seasonal variation of environmental radon gas.
Groves-Kirkby CJ, Denman AR, Phillips PS., J. Environ. Manage. 90(8), 2009
PMID: 19233544
Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments.
Grunberger A, van Ooyen J, Paczia N, Rohe P, Schiendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 110(1), 2012
PMID: 22890752
Single-cell microfluidics: opportunity for bioprocess development.
Grunberger A, Wiechert W, Kohlheyer D., Curr. Opin. Biotechnol. 29(), 2014
PMID: 24642389
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grunberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Noh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
High-throughput, multiparameter analysis of single cells.
Haselgrubler T, Haider M, Ji B, Juhasz K, Sonnleitner A, Balogi Z, Hesse J., Anal Bioanal Chem 406(14), 2013
PMID: 24292433
Noise-driven growth rate gain in clonal cellular populations.
Hashimoto M, Nozoe T, Nakaoka H, Okura R, Akiyoshi S, Kaneko K, Kussell E, Wakamoto Y., Proc. Natl. Acad. Sci. U.S.A. 113(12), 2016
PMID: 26951676
Vizardous: interactive analysis of microbial populations with single cell resolution.
Helfrich S, Azzouzi CE, Probst C, Seiffarth J, Grunberger A, Wiechert W, Kohlheyer D, Noh K., Bioinformatics 31(23), 2015
PMID: 26261223
Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations.
Helfrich S, Pfeifer E, Kramer C, Sachs CC, Wiechert W, Kohlheyer D, Noh K, Frunzke J., Mol. Microbiol. 98(4), 2015
PMID: 26235130
Modeling the growth of Corynebacterium glutamicum under product inhibition in ‐glutamic acid fermentation
AUTHOR UNKNOWN, 2005
Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells.
Lara AR, Galindo E, Ramirez OT, Palomares LA., Mol. Biotechnol. 34(3), 2006
PMID: 17284782
Enhanced ‐lysine production in threonine‐limited continuous culture of Corynebacterium glutamicum by using gluconate as a secondary carbon source with glucose
AUTHOR UNKNOWN, 1998
Diversification of microfluidic chip for applications in cell‐based bioanalysis
AUTHOR UNKNOWN, 2012
Streaming instability in growing cell populations.
Mather W, Mondragon-Palomino O, Danino T, Hasty J, Tsimring LS., Phys. Rev. Lett. 104(20), 2010
PMID: 20867071
Microfluidic cell culture.
Mehling M, Tay S., Curr. Opin. Biotechnol. 25(), 2013
PMID: 24484886
The growth of bacterial cultures
AUTHOR UNKNOWN, 1949
The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids.
Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J., Metab. Eng. 14(4), 2012
PMID: 22583745
Diffusive transport in two‐phase media: spatially periodic models and Maxwell's theory for isotropic and anisotropic systems
AUTHOR UNKNOWN, 1994
Microfluidics expanding the frontiers of microbial ecology.
Rusconi R, Garren M, Stocker R., Annu Rev Biophys 43(), 2014
PMID: 24773019
Cell-size control and homeostasis in bacteria.
Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M, Jun S., Curr. Biol. 25(3), 2014
PMID: 25544609

AUTHOR UNKNOWN, 2016
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Unthan S, Grunberger A, van Ooyen J, Gatgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 111(2), 2013
PMID: 23996851

AUTHOR UNKNOWN, 2011
The Synchronization of Replication and Division Cycles in Individual E. coli Cells.
Wallden M, Fange D, Lundius EG, Baltekin O, Elf J., Cell 166(3), 2016
PMID: 27471967
Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.
Westerwalbesloh C, Grunberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E., Lab Chip 15(21), 2015
PMID: 26345659
Multi‐species diffusion and reaction in biofilms and cellular media
AUTHOR UNKNOWN, 2000
Calculation of effective diffusivities for biofilms and tissues.
Wood BD, Quintard M, Whitaker S., Biotechnol. Bioeng. 77(5), 2002
PMID: 11788949

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28371389
PubMed | Europe PMC

Suchen in

Google Scholar