Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses

Delvigne F, Baert J, Sassi H, Fickers P, Grünberger A, Dusny C (2017)
Biotechnology Journal 12(7): 1600549.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Delvigne, Frank; Baert, Jonathan; Sassi, Hosni; Fickers, Patrick; Grünberger, AlexanderUniBi; Dusny, Christian
Erscheinungsjahr
2017
Zeitschriftentitel
Biotechnology Journal
Band
12
Ausgabe
7
Art.-Nr.
1600549
ISSN
1860-6768
Page URI
https://pub.uni-bielefeld.de/record/2912737

Zitieren

Delvigne F, Baert J, Sassi H, Fickers P, Grünberger A, Dusny C. Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses. Biotechnology Journal. 2017;12(7): 1600549.
Delvigne, F., Baert, J., Sassi, H., Fickers, P., Grünberger, A., & Dusny, C. (2017). Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses. Biotechnology Journal, 12(7), 1600549. doi:10.1002/biot.201600549
Delvigne, Frank, Baert, Jonathan, Sassi, Hosni, Fickers, Patrick, Grünberger, Alexander, and Dusny, Christian. 2017. “Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses”. Biotechnology Journal 12 (7): 1600549.
Delvigne, F., Baert, J., Sassi, H., Fickers, P., Grünberger, A., and Dusny, C. (2017). Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses. Biotechnology Journal 12:1600549.
Delvigne, F., et al., 2017. Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses. Biotechnology Journal, 12(7): 1600549.
F. Delvigne, et al., “Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses”, Biotechnology Journal, vol. 12, 2017, : 1600549.
Delvigne, F., Baert, J., Sassi, H., Fickers, P., Grünberger, A., Dusny, C.: Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses. Biotechnology Journal. 12, : 1600549 (2017).
Delvigne, Frank, Baert, Jonathan, Sassi, Hosni, Fickers, Patrick, Grünberger, Alexander, and Dusny, Christian. “Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses”. Biotechnology Journal 12.7 (2017): 1600549.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Growth-dependent recombinant product formation kinetics can be reproduced through engineering of glucose transport and is prone to phenotypic heterogeneity.
Fragoso-Jiménez JC, Baert J, Nguyen TM, Liu W, Sassi H, Goormaghtigh F, Van Melderen L, Gaytán P, Hernández-Chávez G, Martinez A, Delvigne F, Gosset G., Microb Cell Fact 18(1), 2019
PMID: 30710996
Long-Term Biogas Production from Glycolate by Diverse and Highly Dynamic Communities.
Günther S, Becker D, Hübschmann T, Reinert S, Kleinsteuber S, Müller S, Wilhelm C., Microorganisms 6(4), 2018
PMID: 30287755
Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.
Binder D, Drepper T, Jaeger KE, Delvigne F, Wiechert W, Kohlheyer D, Grünberger A., Metab Eng 42(), 2017
PMID: 28645641
Engineering Microbial Metabolite Dynamics and Heterogeneity.
Schmitz AC, Hartline CJ, Zhang F., Biotechnol J 12(10), 2017
PMID: 28901715
Beyond the bulk: disclosing the life of single microbial cells.
Rosenthal K, Oehling V, Dusny C, Schmid A., FEMS Microbiol Rev 41(6), 2017
PMID: 29029257

136 References

Daten bereitgestellt von Europe PubMed Central.

Engineering static and dynamic control of synthetic pathways.
Holtz WJ, Keasling JD., Cell 140(1), 2010
PMID: 20085699
Programmable cells: interfacing natural and engineered gene networks.
Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ., Proc. Natl. Acad. Sci. U.S.A. 101(22), 2004
PMID: 15159530
Noise and robustness in prokaryotic regulatory networks.
Silva-Rocha R, de Lorenzo V., Annu. Rev. Microbiol. 64(), 2010
PMID: 20825349
Noise in protein expression scales with natural protein abundance.
Bar-Even A, Paulsson J, Maheshri N, Carmi M, O'Shea E, Pilpel Y, Barkai N., Nat. Genet. 38(6), 2006
PMID: 16715097
Promoter sequence determines the relationship between expression level and noise.
Carey LB, van Dijk D, Sloot PM, Kaandorp JA, Segal E., PLoS Biol. 11(4), 2013
PMID: 23565060
Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states.
Ferguson ML, Le Coq D, Jules M, Aymerich S, Radulescu O, Declerck N, Royer CA., Proc. Natl. Acad. Sci. U.S.A. 109(1), 2011
PMID: 22190493
Making variability less variable: matching expression system and host for oxygenase-based biotransformations.
Lindmeyer M, Meyer D, Kuhn D, Buhler B, Schmid A., J. Ind. Microbiol. Biotechnol. 42(6), 2015
PMID: 25877162
Intrinsic and extrinsic contributions to stochasticity in gene expression.
Swain PS, Elowitz MB, Siggia ED., Proc. Natl. Acad. Sci. U.S.A. 99(20), 2002
PMID: 12237400
A growing focus on bacterial individuality.
Ackermann M, Schreiber F., Environ. Microbiol. 17(7), 2015
PMID: 25973653
A functional perspective on phenotypic heterogeneity in microorganisms.
Ackermann M., Nat. Rev. Microbiol. 13(8), 2015
PMID: 26145732
Cellular decision making and biological noise: from microbes to mammals.
Balazsi G, van Oudenaarden A, Collins JJ., Cell 144(6), 2011
PMID: 21414483
Bacterial Ventures into Multicellularity: Collectivism through Individuality.
van Vliet S, Ackermann M., PLoS Biol. 13(6), 2015
PMID: 26038821
Microbial individuality: how single-cell heterogeneity enables population level strategies.
Martins BM, Locke JC., Curr. Opin. Microbiol. 24(), 2015
PMID: 25662921
Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells.
Lara AR, Galindo E, Ramirez OT, Palomares LA., Mol. Biotechnol. 34(3), 2006
PMID: 17284782
Euler-Lagrange analysis towards representative down-scaling of a 22 m3 aerobic S. cerevisiae fermentation
Haringa, Chem. Eng. Sci. (), 2017
A methodology for the design of scale-down bioreactors by the use of mixing and circulation stochastic models
Delvigne, Biochem. Eng. J. 28(), 2006
Scale-down effect on the extracellular proteome of Escherichia coli: correlation with membrane permeability and modulation according to substrate heterogeneities
Brognaux, Bioprocess Biosyst Eng. 14(), 2014
Engineering E. coli for large-scale production - Strategies considering ATP expenses and transcriptional responses.
Loffler M, Simen JD, Jager G, Schaferhoff K, Freund A, Takors R., Metab. Eng. 38(), 2016
PMID: 27378496
Vitreoscilla hemoglobin expression in engineered Escherichia coli: improved performance in high cell-density batch cultivations.
Pablos TE, Mora EM, Le Borgne S, Ramirez OT, Gosset G, Lara AR., Biotechnol J 6(8), 2011
PMID: 21744499
Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity.
Delvigne F, Zune Q, Lara AR, Al-Soud W, Sorensen SJ., Trends Biotechnol. 32(12), 2014
PMID: 25457387
The role of physiological heterogeneity in microbial population behavior.
Lidstrom ME, Konopka MC., Nat. Chem. Biol. 6(10), 2010
PMID: 20852608
Separating intrinsic from extrinsic fluctuations in dynamic biological systems.
Hilfinger A, Paulsson J., Proc. Natl. Acad. Sci. U.S.A. 108(29), 2011
PMID: 21730172
Network motifs: theory and experimental approaches.
Alon U., Nat. Rev. Genet. 8(6), 2007
PMID: 17510665
Noise-mean relationship in mutated promoters.
Hornung G, Bar-Ziv R, Rosin D, Tokuriki N, Tawfik DS, Oren M, Barkai N., Genome Res. 22(12), 2012
PMID: 22820945
Genetic determinants and cellular constraints in noisy gene expression.
Sanchez A, Golding I., Science 342(6163), 2013
PMID: 24311680
Regulation of noise in gene expression.
Sanchez A, Choubey S, Kondev J., Annu Rev Biophys 42(), 2013
PMID: 23527780
The stochastic nature of biochemical networks.
Shahrezaei V, Swain PS., Curr. Opin. Biotechnol. 19(4), 2008
PMID: 18662776
Two DNA-encoded strategies for increasing expression with opposing effects on promoter dynamics and transcriptional noise.
Dadiani M, van Dijk D, Segal B, Field Y, Ben-Artzi G, Raveh-Sadka T, Levo M, Kaplow I, Weinberger A, Segal E., Genome Res. 23(6), 2013
PMID: 23403035
Noise in eukaryotic gene expression.
Blake WJ, KAErn M, Cantor CR, Collins JJ., Nature 422(6932), 2003
PMID: 12687005
Poly(dA:dT) tracts: major determinants of nucleosome organization.
Segal E, Widom J., Curr. Opin. Struct. Biol. 19(1), 2009
PMID: 19208466
Noise in biological systems: pros, cons, and mechanisms of control.
Pilpel Y., Methods Mol. Biol. 759(), 2011
PMID: 21863500
The ribosome binding site calculator.
Salis HM., Meth. Enzymol. 498(), 2011
PMID: 21601672
Fine-tuning gene networks using simple sequence repeats.
Egbert RG, Klavins E., Proc. Natl. Acad. Sci. U.S.A. 109(42), 2012
PMID: 22927382
Feedback control of ribosome function in Escherichia coli.
Bremer H, Dennis P., Biochimie 90(3), 2007
PMID: 17999920
Characterization of the response of GFP microbial biosensors sensitive to substrate limitation in scale-down bioreactors
Delvigne, Biochem. Eng. J 55(), 2011
Transcription factor-based biosensors in biotechnology: current state and future prospects.
Mahr R, Frunzke J., Appl. Microbiol. Biotechnol. 100(1), 2015
PMID: 26521244
Engineering and characterization of a superfolder green fluorescent protein.
Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS., Nat. Biotechnol. 24(1), 2005
PMID: 16369541
Engineering controllable protein degradation.
McGinness KE, Baker TA, Sauer RT., Mol. Cell 22(5), 2006
PMID: 16762842
A population-based temporal logic gate for timing and recording chemical events.
Hsiao V, Hori Y, Rothemund PW, Murray RM., Mol. Syst. Biol. 12(5), 2016
PMID: 27193783
Listening to the noise: random fluctuations reveal gene network parameters.
Munsky B, Trinh B, Khammash M., Mol. Syst. Biol. 5(), 2009
PMID: 19888213
Single-cell microfluidics: opportunity for bioprocess development.
Grunberger A, Wiechert W, Kohlheyer D., Curr. Opin. Biotechnol. 29(), 2014
PMID: 24642389
Novel screening methods--biosensors.
Eggeling L, Bott M, Marienhagen J., Curr. Opin. Biotechnol. 35(), 2015
PMID: 25578902
Applications and advances of metabolite biosensors for metabolic engineering.
Liu D, Evans T, Zhang F., Metab. Eng. 31(), 2015
PMID: 26142692
Genetically-encoded biosensors for monitoring cellular stress in bioprocessing.
Polizzi KM, Kontoravdi C., Curr. Opin. Biotechnol. 31(), 2014
PMID: 25151059
Viability states of bacteria-specific mechanisms of selected probes
Strauber, Cytometry A 77(), 2009
Microbial population heterogeneity versus bioreactor heterogeneity: Evaluation of Redox Sensor Green as an exogenous metabolic biosensor
Baert, Eng. Life Sci. (), 2016
Green fluorescent protein (GFP) leakage from microbial biosensors provides useful information for the evaluation of the scale-down effect.
Delvigne F, Brognaux A, Francis F, Twizere JC, Gorret N, Sorensen SJ, Thonart P., Biotechnol J 6(8), 2011
PMID: 21695786
Physics and applications of microfluidics in biology.
Beebe DJ, Mensing GA, Walker GM., Annu Rev Biomed Eng 4(), 2002
PMID: 12117759
A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.
Damodaran SP, Eberhard S, Boitard L, Rodriguez JG, Wang Y, Bremond N, Baudry J, Bibette J, Wollman FA., PLoS ONE 10(3), 2015
PMID: 25760649
Single-cell analysis in biotechnology, systems biology, and biocatalysis.
Fritzsch FS, Dusny C, Frick O, Schmid A., Annu Rev Chem Biomol Eng 3(), 2012
PMID: 22468600
A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors.
Brognaux A, Han S, Sorensen SJ, Lebeau F, Thonart P, Delvigne F., Microb. Cell Fact. 12(), 2013
PMID: 24176169
Real-time on-line flow cytometry for bioprocess monitoring.
Broger T, Odermatt RP, Huber P, Sonnleitner B., J. Biotechnol. 154(4), 2011
PMID: 21609740
Monitoring of dynamic microbiological processes using real-time flow cytometry.
Arnoldini M, Heck T, Blanco-Fernandez A, Hammes F., PLoS ONE 8(11), 2013
PMID: 24244624
Dynamic single-cell analysis of Saccharomyces cerevisiae under process perturbation: comparison of different methods for monitoring the intensity of population heterogeneity
Delvigne, J. Chem. Technol. Biotechnol. 90(), 2015

Ladner, 2016
Vizardous: interactive analysis of microbial populations with single cell resolution.
Helfrich S, Azzouzi CE, Probst C, Seiffarth J, Grunberger A, Wiechert W, Kohlheyer D, Noh K., Bioinformatics 31(23), 2015
PMID: 26261223
Memory and fitness optimization of bacteria under fluctuating environments.
Lambert G, Kussell E, Kussel E., PLoS Genet. 10(9), 2014
PMID: 25255314
Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes.
Probst C, Grunberger A, Wiechert W, Kohlheyer D., J. Microbiol. Methods 95(3), 2013
PMID: 24041615
Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli.
Reyes LH, Almario MP, Winkler J, Orozco MM, Kao KC., Metab. Eng. 14(5), 2012
PMID: 22652227
Rapid strain improvement through optimized evolution in the cytostat.
Gilbert A, Sangurdekar DP, Srienc F., Biotechnol. Bioeng. 103(3), 2009
PMID: 19241387
Building a morbidostat: an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition.
Toprak E, Veres A, Yildiz S, Pedraza JM, Chait R, Paulsson J, Kishony R., Nat Protoc 8(3), 2013
PMID: 23429717
Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis.
Hammes F, Broger T, Weilenmann HU, Vital M, Helbing J, Bosshart U, Huber P, Odermatt RP, Sonnleitner B., Cytometry A 81(6), 2012
PMID: 22489027
In Vivo Real-Time Control of Gene Expression: A Comparative Analysis of Feedback Control Strategies in Yeast.
Fiore G, Perrino G, di Bernardo M, di Bernardo D., ACS Synth Biol 5(2), 2015
PMID: 26554583
Isolated microbial single cells and resulting micropopulations grow faster in controlled environments.
Dusny C, Fritzsch FS, Frick O, Schmid A., Appl. Environ. Microbiol. 78(19), 2012
PMID: 22820335
Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth.
Milias-Argeitis A, Rullan M, Aoki SK, Buchmann P, Khammash M., Nat Commun 7(), 2016
PMID: 27562138
Optogenetic control of intracellular signaling pathways.
Zhang K, Cui B., Trends Biotechnol. 33(2), 2014
PMID: 25529484
In silico feedback for in vivo regulation of a gene expression circuit.
Milias-Argeitis A, Summers S, Stewart-Ornstein J, Zuleta I, Pincus D, El-Samad H, Khammash M, Lygeros J., Nat. Biotechnol. 29(12), 2011
PMID: 22057053
Photocaged Arabinose: A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression.
Binder D, Bier C, Grunberger A, Drobietz D, Hage-Hulsmann J, Wandrey G, Buchs J, Kohlheyer D, Loeschcke A, Wiechert W, Jaeger KE, Pietruszka J, Drepper T., Chembiochem 17(4), 2016
PMID: 26677142
Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β-d-Thiogalactopyranoside for Light-Mediated Optimization of lac Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum.
Binder D, Frohwitter J, Mahr R, Bier C, Grunberger A, Loeschcke A, Peters-Wendisch P, Kohlheyer D, Pietruszka J, Frunzke J, Jaeger KE, Wendisch VF, Drepper T., Appl. Environ. Microbiol. 82(20), 2016
PMID: 27520809
Real-time optogenetic control of intracellular protein concentration in microbial cell cultures.
Melendez J, Patel M, Oakes BL, Xu P, Morton P, McClean MN., Integr Biol (Camb) 6(3), 2014
PMID: 24477515
In-vivo real-time control of protein expression from endogenous and synthetic gene networks.
Menolascina F, Fiore G, Orabona E, De Stefano L, Ferry M, Hasty J, di Bernardo M, di Bernardo D., PLoS Comput. Biol. 10(5), 2014
PMID: 24831205
Analysis and design of a genetic circuit for dynamic metabolic engineering.
Anesiadis N, Kobayashi H, Cluett WR, Mahadevan R., ACS Synth Biol 2(8), 2013
PMID: 23654263
Microbial biofilms: a concept for industrial catalysis?
Rosche B, Li XZ, Hauer B, Schmid A, Buehler K., Trends Biotechnol. 27(11), 2009
PMID: 19783314
Variability in subpopulation formation propagates into biocatalytic variability of engineered Pseudomonas putida strains.
Lindmeyer M, Jahn M, Vorpahl C, Muller S, Schmid A, Buhler B., Front Microbiol 6(), 2015
PMID: 26483771
Accurate determination of plasmid copy number of flow-sorted cells using droplet digital PCR.
Jahn M, Vorpahl C, Turkowsky D, Lindmeyer M, Buhler B, Harms H, Muller S., Anal. Chem. 86(12), 2014
PMID: 24842041
Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis
Gross, Biotechnol. Bioeng. 105(), 2009
Control, exploitation and tolerance of intracellular noise.
Rao CV, Wolf DM, Arkin AP., Nature 420(6912), 2002
PMID: 12432408
Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS.
Zimmermann M, Escrig S, Hubschmann T, Kirf MK, Brand A, Inglis RF, Musat N, Muller S, Meibom A, Ackermann M, Schreiber F., Front Microbiol 6(), 2015
PMID: 25932020
Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery.
Gough AH, Chen N, Shun TY, Lezon TR, Boltz RC, Reese CE, Wagner J, Vernetti LA, Grandis JR, Lee AV, Stern AM, Schurdak ME, Taylor DL., PLoS ONE 9(7), 2014
PMID: 25036749
The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems.
Besmer MD, Weissbrodt DG, Kratochvil BE, Sigrist JA, Weyland MS, Hammes F., Front Microbiol 5(), 2014
PMID: 24917858
Single-cell variability in growing Saccharomyces cerevisiae cell populations measured with automated flow cytometry.
Kacmar J, Zamamiri A, Carlson R, Abu-Absi NR, Srienc F., J. Biotechnol. 109(3), 2004
PMID: 15066762
Cytometric fingerprints: evaluation of new tools for analyzing microbial community dynamics.
Koch C, Harnisch F, Schroder U, Muller S., Front Microbiol 5(), 2014
PMID: 24926290
Flow cytometry community fingerprinting and amplicon sequencing for the assessment of landfill leachate cellulolytic bioaugmentation.
Kinet R, Dzaomuho P, Baert J, Taminiau B, Daube G, Nezer C, Brostaux Y, Nguyen F, Dumont G, Thonart P, Delvigne F., Bioresour. Technol. 214(), 2016
PMID: 27160955
Flow cytometry for fast microbial community fingerprinting.
De Roy K, Clement L, Thas O, Wang Y, Boon N., Water Res. 46(3), 2011
PMID: 22192760
A genome-wide analysis of promoter-mediated phenotypic noise in Escherichia coli.
Silander OK, Nikolic N, Zaslaver A, Bren A, Kikoin I, Alon U, Ackermann M., PLoS Genet. 8(1), 2012
PMID: 22275871
Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.
Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS., Nature 441(7095), 2006
PMID: 16699522
Phenotypic variability in bioprocessing conditions can be tracked on the basis of on-line flow cytometry and fits to a scaling law.
Baert J, Kinet R, Brognaux A, Delepierre A, Telek S, Sorensen SJ, Riber L, Fickers P, Delvigne F., Biotechnol J 10(8), 2015
PMID: 26179479
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grunberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Noh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.
Westerwalbesloh C, Grunberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E., Lab Chip 15(21), 2015
PMID: 26345659
Isolated microbial single cells and resulting micropopulations grow faster in controlled environments.
Dusny C, Fritzsch FS, Frick O, Schmid A., Appl. Environ. Microbiol. 78(19), 2012
PMID: 22820335
Iterative experiment design guides the characterization of a light-inducible gene expression circuit.
Ruess J, Parise F, Milias-Argeitis A, Khammash M, Lygeros J., Proc. Natl. Acad. Sci. U.S.A. 112(26), 2015
PMID: 26085136
What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast.
Llamosi A, Gonzalez-Vargas AM, Versari C, Cinquemani E, Ferrari-Trecate G, Hersen P, Batt G., PLoS Comput. Biol. 12(2), 2016
PMID: 26859137
Exact stochastic simulation of coupled chemical reactions
Gillespie, J. Phys. Chem. 81(), 1977
Approximate accelerated stochastic simulation of chemically reacting systems
Gillespie, J. Chem. Phys. 115(), 2001
Using gene expression noise to understand gene regulation.
Munsky B, Neuert G, van Oudenaarden A., Science 336(6078), 2012
PMID: 22499939
Phenotypic bistability in Escherichia coli's central carbon metabolism.
Kotte O, Volkmer B, Radzikowski JL, Heinemann M., Mol. Syst. Biol. 10(), 2014
PMID: 24987115
Bet-hedging during bacterial diauxic shift.
Solopova A, van Gestel J, Weissing FJ, Bachmann H, Teusink B, Kok J, Kuipers OP., Proc. Natl. Acad. Sci. U.S.A. 111(20), 2014
PMID: 24799698
Single-cell dynamics reveals sustained growth during diauxic shifts.
Boulineau S, Tostevin F, Kiviet DJ, ten Wolde PR, Nghe P, Tans SJ., PLoS ONE 8(4), 2013
PMID: 23637881
Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria.
Gefen O, Gabay C, Mumcuoglu M, Engel G, Balaban NQ., Proc. Natl. Acad. Sci. U.S.A. 105(16), 2008
PMID: 18427112
Reproducibility of Fluorescent Expression from Engineered Biological Constructs in E. coli.
Beal J, Haddock-Angelli T, Gershater M, de Mora K, Lizarazo M, Hollenhorst J, Rettberg R; iGEM Interlab Study Contributors., PLoS ONE 11(3), 2016
PMID: 26937966
FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units.
Castillo-Hair SM, Sexton JT, Landry BP, Olson EJ, Igoshin OA, Tabor JJ., ACS Synth Biol 5(7), 2016
PMID: 27110723

Milo, 2016
Visual account of protein investment in cellular functions.
Liebermeister W, Noor E, Flamholz A, Davidi D, Bernhardt J, Milo R., Proc. Natl. Acad. Sci. U.S.A. 111(23), 2014
PMID: 24889604
Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions.
Winkel M, Salman-Carvalho V, Woyke T, Richter M, Schulz-Vogt HN, Flood BE, Bailey JV, Mußmann M., Front Microbiol 7(), 2016
PMID: 27446006
Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform.
Nakamura K, Iizuka R, Nishi S, Yoshida T, Hatada Y, Takaki Y, Iguchi A, Yoon DH, Sekiguchi T, Shoji S, Funatsu T., Sci Rep 6(), 2016
PMID: 26915788
Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes.
Hosokawa M, Hoshino Y, Nishikawa Y, Hirose T, Yoon DH, Mori T, Sekiguchi T, Shoji S, Takeyama H., Biosens Bioelectron 67(), 2014
PMID: 25194237
Single cell Raman spectroscopy for cell sorting and imaging.
Li M, Xu J, Romero-Gonzalez M, Banwart SA, Huang WE., Curr. Opin. Biotechnol. 23(1), 2011
PMID: 22138495
Biofilm formation in environmental bacteria is influenced by different macromolecules depending on genus and species.
Andrews JS, Rolfe SA, Huang WE, Scholes JD, Banwart SA., Environ. Microbiol. 12(9), 2010
PMID: 20406292
NanoSIP: NanoSIMS applications for microbial biology.
Pett-Ridge J, Weber PK., Methods Mol. Biol. 881(), 2012
PMID: 22639220
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28544731
PubMed | Europe PMC

Suchen in

Google Scholar