Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level

Nanda AM, Heyer A, Kramer C, Grünberger A, Kohlheyer D, Frunzke J (2014)
Journal of Bacteriology 196(1): 180-188.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.35 MB
Autor*in
Nanda, Arun M.; Heyer, Antonia; Kramer, Christina; Grünberger, AlexanderUniBi; Kohlheyer, Dietrich; Frunzke, Julia
Abstract / Bemerkung
The genome of the Gram-positive soil bacterium Corynebacterium glutamicum ATCC 13032 contains three integrated prophage elements (CGP1 to -3). Recently, it was shown that the large lysogenic prophage CGP3 (∼187 kbp) is excised spontaneously in a small number of cells. In this study, we provide evidence that a spontaneously induced SOS response is partly responsible for the observed spontaneous CGP3 induction. Whereas previous studies focused mainly on the induction of prophages at the population level, we analyzed the spontaneous CGP3 induction at the single-cell level using promoters of phage genes (Pint2 and Plysin) fused to reporter genes encoding fluorescent proteins. Flow-cytometric analysis revealed a spontaneous CGP3 activity in about 0.01 to 0.08% of the cells grown in standard minimal medium, which displayed a significantly reduced viability. A PrecA-eyfp promoter fusion revealed that a small fraction of C. glutamicum cells (∼0.2%) exhibited a spontaneous induction of the SOS response. Correlation of PrecA to the activity of downstream SOS genes (PdivS and PrecN) confirmed a bona fide induction of this stress response rather than stochastic gene expression. Interestingly, the reporter output of PrecA and CGP3 promoter fusions displayed a positive correlation at the single-cell level (ρ = 0.44 to 0.77). Furthermore, analysis of the PrecA-eyfp/Pint2-e2-crimson strain during growth revealed the highest percentage of spontaneous PrecA and Pint2 activity in the early exponential phase, when fast replication occurs. Based on these studies, we postulate that spontaneously occurring DNA damage induces the SOS response, which in turn triggers the induction of lysogenic prophages.
Erscheinungsjahr
2014
Zeitschriftentitel
Journal of Bacteriology
Band
196
Ausgabe
1
Seite(n)
180-188
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/2912730

Zitieren

Nanda AM, Heyer A, Kramer C, Grünberger A, Kohlheyer D, Frunzke J. Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level. Journal of Bacteriology. 2014;196(1):180-188.
Nanda, A. M., Heyer, A., Kramer, C., Grünberger, A., Kohlheyer, D., & Frunzke, J. (2014). Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level. Journal of Bacteriology, 196(1), 180-188. doi:10.1128/jb.01018-13
Nanda, Arun M., Heyer, Antonia, Kramer, Christina, Grünberger, Alexander, Kohlheyer, Dietrich, and Frunzke, Julia. 2014. “Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level”. Journal of Bacteriology 196 (1): 180-188.
Nanda, A. M., Heyer, A., Kramer, C., Grünberger, A., Kohlheyer, D., and Frunzke, J. (2014). Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level. Journal of Bacteriology 196, 180-188.
Nanda, A.M., et al., 2014. Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level. Journal of Bacteriology, 196(1), p 180-188.
A.M. Nanda, et al., “Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level”, Journal of Bacteriology, vol. 196, 2014, pp. 180-188.
Nanda, A.M., Heyer, A., Kramer, C., Grünberger, A., Kohlheyer, D., Frunzke, J.: Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level. Journal of Bacteriology. 196, 180-188 (2014).
Nanda, Arun M., Heyer, Antonia, Kramer, Christina, Grünberger, Alexander, Kohlheyer, Dietrich, and Frunzke, Julia. “Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level”. Journal of Bacteriology 196.1 (2014): 180-188.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:50Z
MD5 Prüfsumme
2bb9bd8e4eaef0da0f477b83db27425d


23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of the mycothiol redox potential in Corynebacterium glutamicum.
Tung QN, Loi VV, Busche T, Nerlich A, Mieth M, Milse J, Kalinowski J, Hocke AC, Antelmann H., Redox Biol 20(), 2019
PMID: 30481728
The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum.
Hünnefeld M, Persicke M, Kalinowski J, Frunzke J., Front Microbiol 10(), 2019
PMID: 31164873
Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains.
Rohde C, Resch G, Pirnay JP, Blasdel BG, Debarbieux L, Gelman D, Górski A, Hazan R, Huys I, Kakabadze E, Łobocka M, Maestri A, Almeida GMF, Makalatia K, Malik DJ, Mašlaňová I, Merabishvili M, Pantucek R, Rose T, Štveráková D, Van Raemdonck H, Verbeken G, Chanishvili N., Viruses 10(4), 2018
PMID: 29621199
Phage Therapy: What Have We Learned?
Górski A, Międzybrodzki R, Łobocka M, Głowacka-Rutkowska A, Bednarek A, Borysowski J, Jończyk-Matysiak E, Łusiak-Szelachowska M, Weber-Dąbrowska B, Bagińska N, Letkiewicz S, Dąbrowska K, Scheres J., Viruses 10(6), 2018
PMID: 29843391
Characterization of the Prophage Repertoire of African Salmonella Typhimurium ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1.
Owen SV, Wenner N, Canals R, Makumi A, Hammarlöf DL, Gordon MA, Aertsen A, Feasey NA, Hinton JC., Front Microbiol 8(), 2017
PMID: 28280485
Polymerization Dynamics of the Prophage-Encoded Actin-Like Protein AlpC Is Influenced by the DNA-Binding Adapter AlpA.
Forde AJ, Albrecht N, Klingl A, Donovan C, Bramkamp M., Front Microbiol 8(), 2017
PMID: 28824563
The In-Feed Antibiotic Carbadox Induces Phage Gene Transcription in the Swine Gut Microbiome.
Johnson TA, Looft T, Severin AJ, Bayles DO, Nasko DJ, Wommack KE, Howe A, Allen HK., MBio 8(4), 2017
PMID: 28790203
Computational models of populations of bacteria and lytic phage.
Krysiak-Baltyn K, Martin GJ, Stickland AD, Scales PJ, Gras SL., Crit Rev Microbiol 42(6), 2016
PMID: 26828960
Identification and Initial Characterization of Prophages in Vibrio campbellii.
Lorenz N, Reiger M, Toro-Nahuelpan M, Brachmann A, Poettinger L, Plener L, Lassak J, Jung K., PLoS One 11(5), 2016
PMID: 27214518
Silencing of cryptic prophages in Corynebacterium glutamicum.
Pfeifer E, Hünnefeld M, Popa O, Polen T, Kohlheyer D, Baumgart M, Frunzke J., Nucleic Acids Res 44(21), 2016
PMID: 27492287
Technical bias of microcultivation environments on single-cell physiology.
Dusny C, Grünberger A, Probst C, Wiechert W, Kohlheyer D, Schmid A., Lab Chip 15(8), 2015
PMID: 25710324
A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.
Donovan C, Heyer A, Pfeifer E, Polen T, Wittmann A, Krämer R, Frunzke J, Bramkamp M., Nucleic Acids Res 43(10), 2015
PMID: 25916847
Vizardous: interactive analysis of microbial populations with single cell resolution.
Helfrich S, Azzouzi CE, Probst C, Seiffarth J, Grünberger A, Wiechert W, Kohlheyer D, Nöh K., Bioinformatics 31(23), 2015
PMID: 26261223
Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations.
Helfrich S, Pfeifer E, Krämer C, Sachs CC, Wiechert W, Kohlheyer D, Nöh K, Frunzke J., Mol Microbiol 98(4), 2015
PMID: 26235130
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grünberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Nöh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
Reporters for Single-Cell Analysis of Colicin Ib Expression in Salmonella enterica Serovar Typhimurium.
Spriewald S, Glaser J, Beutler M, Koeppel MB, Stecher B., PLoS One 10(12), 2015
PMID: 26659346
DNA cleavage by CgII and NgoAVII requires interaction between N- and R-proteins and extensive nucleotide hydrolysis.
Zaremba M, Toliusis P, Grigaitis R, Manakova E, Silanskas A, Tamulaitiene G, Szczelkun MD, Siksnys V., Nucleic Acids Res 42(22), 2014
PMID: 25429977

38 References

Daten bereitgestellt von Europe PubMed Central.

Prophages and bacterial genomics: what have we learned so far?
Casjens S., Mol. Microbiol. 49(2), 2003
PMID: 12886937

AUTHOR UNKNOWN, 2011

AUTHOR UNKNOWN, 2012
The genomes of amino acid-producing corynebacteria
Kalinowski J., 2005
Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3.
Frunzke J, Bramkamp M, Schweitzer JE, Bott M., J. Bacteriol. 190(14), 2008
PMID: 18487330
Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, Bott M, Noack S, Frunzke J., Appl. Environ. Microbiol. 79(19), 2013
PMID: 23892752
Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1.
Godeke J, Paul K, Lassak J, Thormann KM., ISME J 5(4), 2010
PMID: 20962878
Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.
Carrolo M, Frias MJ, Pinto FR, Melo-Cristino J, Ramirez M., PLoS ONE 5(12), 2010
PMID: 21187931
The EPS matrix: the "house of biofilm cells".
Flemming HC, Neu TR, Wozniak DJ., J. Bacteriol. 189(22), 2007
PMID: 17675377
Extracellular DNA required for bacterial biofilm formation.
Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS., Science 295(5559), 2002
PMID: 11859186
Lysogeny.
LWOFF A., Bacteriol Rev 17(4), 1953
PMID: 13105613
Switches in bacteriophage lambda development.
Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S., Annu. Rev. Genet. 39(), 2005
PMID: 16285866

Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T., 2005
A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
Grunberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Noack S, Wiechert W, Kohlheyer D., Lab Chip 12(11), 2012
PMID: 22511122
The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids.
Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J., Metab. Eng. 14(4), 2012
PMID: 22583745
High efficiency transformation of Escherichia coli with plasmids.
Inoue H, Nojima H, Okayama H., Gene 96(1), 1990
PMID: 2265755
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays.
Jochmann N, Kurze AK, Czaja LF, Brinkrolf K, Brune I, Huser AT, Hansmeier N, Puhler A, Borovok I, Tauch A., Microbiology (Reading, Engl.) 155(Pt 5), 2009
PMID: 19372162
Destabilized eYFP variants for dynamic gene expression studies in Corynebacterium glutamicum.
Hentschel E, Will C, Mustafi N, Burkovski A, Rehm N, Frunzke J., Microb Biotechnol 6(2), 2012
PMID: 22938655
A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling.
Strack RL, Hein B, Bhattacharyya D, Hell SW, Keenan RJ, Glick BS., Biochemistry 48(35), 2009
PMID: 19658435
Microfluidic picoliter bioreactor for microbial single cell analysis: fabrication, system setup and operation
Grünberger A, Probst C, Heyer A, Wiechert W, Frunzke J, Kohlheyer D., 0
DivS, a novel SOS-inducible cell-division suppressor in Corynebacterium glutamicum.
Ogino H, Teramoto H, Inui M, Yukawa H., Mol. Microbiol. 67(3), 2007
PMID: 18086211
Spontaneous DNA breakage in single living Escherichia coli cells.
Pennington JM, Rosenberg SM., Nat. Genet. 39(6), 2007
PMID: 17529976
Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogeneous expression.
Kamensek S, Podlesek Z, Gillor O, Zgur-Bertok D., BMC Microbiol. 10(), 2010
PMID: 21070632
Inactivation of prophage lambda repressor in vivo.
Bailone A, Levine A, Devoret R., J. Mol. Biol. 131(3), 1979
PMID: 159955
The importance of repairing stalled replication forks.
Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ., Nature 404(6773), 2000
PMID: 10716434
Replication fork pausing and recombination or "gimme a break".
Rothstein R, Michel B, Gangloff S., Genes Dev. 14(1), 2000
PMID: 10640269
Prophage contribution to bacterial population dynamics.
Bossi L, Fuentes JA, Mora G, Figueroa-Bossi N., J. Bacteriol. 185(21), 2003
PMID: 14563883
Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results.
Los JM, Los M, Wegrzyn A, Wegrzyn G., Front Cell Infect Microbiol 2(), 2012
PMID: 23316482
Aging may be a conditional strategic choice and not an inevitable outcome for bacteria.
Watve M, Parab S, Jogdand P, Keni S., Proc. Natl. Acad. Sci. U.S.A. 103(40), 2006
PMID: 17001004
Studies on the amino acid fermentation. Part 1
Kinoshita S, Udaka S, Shimono M., 2004
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24163339
PubMed | Europe PMC

Suchen in

Google Scholar