Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments

Grünberger A, van Ooyen J, Paczia N, Rohe P, Schendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S (2013)
Biotechnology and bioengineering 110(1): 220-228.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Grünberger, AlexanderUniBi; van Ooyen, Jan; Paczia, Nicole; Rohe, Peter; Schendzielorz, Georg; Eggeling, Lothar; Wiechert, Wolfgang; Kohlheyer, Dietrich; Noack, Stephan
Abstract / Bemerkung
Fast growth of industrial microorganisms, such as Corynebacterium glutamicum, is a direct amplifier for the productivity of any growth coupled or decoupled production process. Recently, it has been shown that C. glutamicum when grown in a novel picoliter bioreactor (PLBR) exhibits a 50% higher growth rate compared to a 1 L batch cultivation [Grünberger et al. (2012) Lab Chip]. We here compare growth of C. glutamicum with glucose as substrate at different scales covering batch cultivations in the liter range down to single cell cultivations in the picoliter range. The maximum growth rate of standard batch cultures as estimated from different biomass quantification methods is equation image even for microtiter scale cultivations. In contrast, growth in a microfluidic perfusion system enabling analysis of single cells reproducibly reveals a higher growth rate of equation image. When in the same perfusion system cell-free supernatant from exponentially grown shake flask cultures is used the growth rate of single cells is reduced to equation image. Likewise, when fresh medium is additionally supplied with 5 mM acetate, a growth rate of equation image is determined. These results prove that higher growth rates of C. glutamicum than known from typical batch cultivations are possible, and that growth is definitely impaired by very low concentrations of byproducts such as acetate.
Erscheinungsjahr
2013
Zeitschriftentitel
Biotechnology and bioengineering
Band
110
Ausgabe
1
Seite(n)
220 - 228
ISSN
0006-3592
Page URI
https://pub.uni-bielefeld.de/record/2912631

Zitieren

Grünberger A, van Ooyen J, Paczia N, et al. Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments. Biotechnology and bioengineering. 2013;110(1):220-228.
Grünberger, A., van Ooyen, J., Paczia, N., Rohe, P., Schendzielorz, G., Eggeling, L., Wiechert, W., et al. (2013). Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments. Biotechnology and bioengineering, 110(1), 220-228. doi:10.1002/bit.24616
Grünberger, Alexander, van Ooyen, Jan, Paczia, Nicole, Rohe, Peter, Schendzielorz, Georg, Eggeling, Lothar, Wiechert, Wolfgang, Kohlheyer, Dietrich, and Noack, Stephan. 2013. “Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments”. Biotechnology and bioengineering 110 (1): 220-228.
Grünberger, A., van Ooyen, J., Paczia, N., Rohe, P., Schendzielorz, G., Eggeling, L., Wiechert, W., Kohlheyer, D., and Noack, S. (2013). Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments. Biotechnology and bioengineering 110, 220-228.
Grünberger, A., et al., 2013. Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments. Biotechnology and bioengineering, 110(1), p 220-228.
A. Grünberger, et al., “Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments”, Biotechnology and bioengineering, vol. 110, 2013, pp. 220-228.
Grünberger, A., van Ooyen, J., Paczia, N., Rohe, P., Schendzielorz, G., Eggeling, L., Wiechert, W., Kohlheyer, D., Noack, S.: Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments. Biotechnology and bioengineering. 110, 220-228 (2013).
Grünberger, Alexander, van Ooyen, Jan, Paczia, Nicole, Rohe, Peter, Schendzielorz, Georg, Eggeling, Lothar, Wiechert, Wolfgang, Kohlheyer, Dietrich, and Noack, Stephan. “Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments”. Biotechnology and bioengineering 110.1 (2013): 220-228.

26 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Identifying the Growth Modulon of Corynebacterium glutamicum.
Haas T, Graf M, Nieß A, Busche T, Kalinowski J, Blombach B, Takors R., Front Microbiol 10(), 2019
PMID: 31134020
Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria.
Sassi H, Nguyen TM, Telek S, Gosset G, Grünberger A, Delvigne F., Microb Biotechnol 12(5), 2019
PMID: 31141840
Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems.
Kim K, Kim S, Jeon JS., Sensors (Basel) 18(2), 2018
PMID: 29401651
Physiological Response of Corynebacterium glutamicum to Increasingly Nutrient-Rich Growth Conditions.
Graf M, Zieringer J, Haas T, Nieß A, Blombach B, Takors R., Front Microbiol 9(), 2018
PMID: 30210489
Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level.
Westerwalbesloh C, Grünberger A, Wiechert W, Kohlheyer D, von Lieres E., Microb Biotechnol 10(4), 2017
PMID: 28371389
Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.
Binder D, Drepper T, Jaeger KE, Delvigne F, Wiechert W, Kohlheyer D, Grünberger A., Metab Eng 42(), 2017
PMID: 28645641
Recent Advancements towards Full-System Microfluidics.
Miled A, Greener J., Sensors (Basel) 17(8), 2017
PMID: 28757587
Beyond the bulk: disclosing the life of single microbial cells.
Rosenthal K, Oehling V, Dusny C, Schmid A., FEMS Microbiol Rev 41(6), 2017
PMID: 29029257
Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
Radek A, Müller MF, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, Noack S., J Biotechnol 231(), 2016
PMID: 27297548
Silencing of cryptic prophages in Corynebacterium glutamicum.
Pfeifer E, Hünnefeld M, Popa O, Polen T, Kohlheyer D, Baumgart M, Frunzke J., Nucleic Acids Res 44(21), 2016
PMID: 27492287
Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation.
Binder D, Probst C, Grünberger A, Hilgers F, Loeschcke A, Jaeger KE, Kohlheyer D, Drepper T., PLoS One 11(8), 2016
PMID: 27525986
Vision Marker-Based In Situ Examination of Bacterial Growth in Liquid Culture Media.
Kim K, Choi D, Lim H, Kim H, Jeon JS., Sensors (Basel) 16(12), 2016
PMID: 27999349
Technical bias of microcultivation environments on single-cell physiology.
Dusny C, Grünberger A, Probst C, Wiechert W, Kohlheyer D, Schmid A., Lab Chip 15(8), 2015
PMID: 25710324
Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations.
Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, Hoehler TM, Jørgensen BB., FEMS Microbiol Rev 39(5), 2015
PMID: 25994609
Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.
Westerwalbesloh C, Grünberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E., Lab Chip 15(21), 2015
PMID: 26345659
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grünberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Nöh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Unthan S, Grünberger A, van Ooyen J, Gätgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol Bioeng 111(2), 2014
PMID: 23996851
Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.
Mustafi N, Grünberger A, Mahr R, Helfrich S, Nöh K, Blombach B, Kohlheyer D, Frunzke J., PLoS One 9(1), 2014
PMID: 24465669
Single-cell microfluidics: opportunity for bioprocess development.
Grünberger A, Wiechert W, Kohlheyer D., Curr Opin Biotechnol 29(), 2014
PMID: 24642389
The development and application of high throughput cultivation technology in bioprocess development.
Long Q, Liu X, Yang Y, Li L, Harvey L, McNeil B, Bai Z., J Biotechnol 192 Pt B(), 2014
PMID: 24698846
Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG.
Binder D, Grünberger A, Loeschcke A, Probst C, Bier C, Pietruszka J, Wiechert W, Kohlheyer D, Jaeger KE, Drepper T., Integr Biol (Camb) 6(8), 2014
PMID: 24894989
Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates.
Radek A, Krumbach K, Gätgens J, Wendisch VF, Wiechert W, Bott M, Noack S, Marienhagen J., J Biotechnol 192 Pt A(), 2014
PMID: 25304460
Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes.
Probst C, Grünberger A, Wiechert W, Kohlheyer D., J Microbiol Methods 95(3), 2013
PMID: 24041615
Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation.
Gruenberger A, Probst C, Heyer A, Wiechert W, Frunzke J, Kohlheyer D., J Vis Exp (82), 2013
PMID: 24336165

28 References

Daten bereitgestellt von Europe PubMed Central.

Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on D-glucose and L-lactate.
Baumchen C, Knoll A, Husemann B, Seletzky J, Maier B, Dietrich C, Amoabediny G, Buchs J., J. Biotechnol. 128(4), 2007
PMID: 17275119

Eggeling, 2005
Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli.
Feist AM, Zielinski DC, Orth JD, Schellenberger J, Herrgard MJ, Palsson BO., Metab. Eng. 12(3), 2009
PMID: 19840862
A microfluidic chemostat for experiments with bacterial and yeast cells.
Groisman A, Lobo C, Cho H, Campbell JK, Dufour YS, Stevens AM, Levchenko A., Nat. Methods 2(9), 2005
PMID: 16118639
A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
Grunberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Noack S, Wiechert W, Kohlheyer D., Lab Chip 12(11), 2012
PMID: 22511122
Kinetics of volume variation of Corynebacterium glutamicum following saline osmotic upshifts
Guillouet, Biotechnol Lett 18(2), 1996
Statistical media optimization studies for growth and PHB production by Ralstonia eutropha
Khanna, Process Biochemistry 40(6), 2005
The Envirostat - a new bioreactor concept.
Kortmann H, Chasanis P, Blank LM, Franzke J, Kenig EY, Schmid A., Lab Chip 9(4), 2008
PMID: 19190793
Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells.
Lara AR, Galindo E, Ramirez OT, Palomares LA., Mol. Biotechnol. 34(3), 2006
PMID: 17284782
Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum.
Litsanov B, Kabus A, Brocker M, Bott M., Microb Biotechnol 5(1), 2011
PMID: 22018023
Bioprocess optimization using design-of-experiments methodology.
Mandenius CF, Brundin A., Biotechnol. Prog. 24(6), 2008
PMID: 19194932
The growth of bacterial cultures
Monod, Annu Rev Microbiol 3(), 1949
Quantification of cell volume changes upon hyperosmotic stress in Saccharomyces cerevisiae.
Petelenz-Kurdziel E, Eriksson E, Smedh M, Beck C, Hohmann S, Goksor M., Integr Biol (Camb) 3(11), 2011
PMID: 22012314
Strategies in high-level expression of recombinant protein in Escherichia coli.
San KY, Bennett GN, Aristidou AA, Chou CH., Ann. N. Y. Acad. Sci. 721(), 1994
PMID: 8010676
Autoinduction of a genetic locus encoding putative acyltransferase in Corynebacterium glutamicum.
Shin HS, Kim YJ, Yoo IH, Lee HS, Jin S, Ha UH., Biotechnol. Lett. 33(1), 2010
PMID: 20821248
A 2-oxoacid dehydrogenase complex of Haloferax volcanii is essential for growth on isoleucine but not on other branched-chain amino acids.
Sisignano M, Morbitzer D, Gatgens J, Oldiges M, Soppa J., Microbiology (Reading, Engl.) 156(Pt 2), 2009
PMID: 19910413
Critical analysis of engineering aspects of shaken flask bioreactors.
Suresh S, Srivastava VC, Mishra IM., Crit. Rev. Biotechnol. 29(4), 2009
PMID: 19929318
Scale-up of microbial processes: Impacts, tools and open questions
Takors, J Biotechnol (), 2011
Robust growth of Escherichia coli.
Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S., Curr. Biol. 20(12), 2010
PMID: 20537537
Mechanistic pathway modeling for industrial biotechnology: challenging but worthwhile.
Wiechert W, Noack S., Curr. Opin. Biotechnol. 22(5), 2011
PMID: 21353523
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22890752
PubMed | Europe PMC

Suchen in

Google Scholar