Beyond growth rate 0.6. What drives Corynebacterium glutamicum to higher growth rates in defined medium

Unthan S, Grünberger A, van Ooyen J, Gätgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S (2014)
Biotechnology and bioengineering 111(2): 359–371.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Unthan, Simon; Grünberger, AlexanderUniBi; van Ooyen, Jan; Gätgens, Jochem; Heinrich, Johanna; Paczia, Nicole; Wiechert, Wolfgang; Kohlheyer, Dietrich; Noack, Stephan
Abstract / Bemerkung
In a former study we showed that Corynebacterium glutamicum grows much faster in defined CGXII glucose medium when growth was initiated in highly diluted environments [Grünberger et al. (2013b) Biotechnol Bioeng]. Here we studied the batch growth of C. glutamicum in CGXII at a comparable low starting biomass concentration of OD ≈ 0.005 in more detail. During bioreactor cultivations a bi-phasic growth behavior with changing growth rates was observed. Initially the culture grew with math formula before the growth rate dropped to math formula. We were able to confirm the elevated growth rate for C. glutamicum in CGXII and showed for the first time a growth rate beyond 0.6 in lab-scale bioreactor cultivations on defined medium. Advanced growth studies combining well-designed bioreactor and microfluidic single-cell cultivations (MSCC) with quantitative transcriptomics, metabolomics and integrative in silico analysis revealed protocatechuic acid as a hidden co-substrate for accelerated growth within CGXII. The presented approach proves the general applicability of MSCC to investigate and validate the effect of single medium components on microorganism growth during cultivation in liquid media, and therefore might be of interest for any kind of basic growth study.
Biotechnology and bioengineering
Page URI


Unthan S, Grünberger A, van Ooyen J, et al. Beyond growth rate 0.6. What drives Corynebacterium glutamicum to higher growth rates in defined medium. Biotechnology and bioengineering. 2014;111(2):359–371.
Unthan, S., Grünberger, A., van Ooyen, J., Gätgens, J., Heinrich, J., Paczia, N., Wiechert, W., et al. (2014). Beyond growth rate 0.6. What drives Corynebacterium glutamicum to higher growth rates in defined medium. Biotechnology and bioengineering, 111(2), 359–371. doi:10.1002/bit.25103
Unthan, S., Grünberger, A., van Ooyen, J., Gätgens, J., Heinrich, J., Paczia, N., Wiechert, W., Kohlheyer, D., and Noack, S. (2014). Beyond growth rate 0.6. What drives Corynebacterium glutamicum to higher growth rates in defined medium. Biotechnology and bioengineering 111, 359–371.
Unthan, S., et al., 2014. Beyond growth rate 0.6. What drives Corynebacterium glutamicum to higher growth rates in defined medium. Biotechnology and bioengineering, 111(2), p 359–371.
S. Unthan, et al., “Beyond growth rate 0.6. What drives Corynebacterium glutamicum to higher growth rates in defined medium”, Biotechnology and bioengineering, vol. 111, 2014, pp. 359–371.
Unthan, S., Grünberger, A., van Ooyen, J., Gätgens, J., Heinrich, J., Paczia, N., Wiechert, W., Kohlheyer, D., Noack, S.: Beyond growth rate 0.6. What drives Corynebacterium glutamicum to higher growth rates in defined medium. Biotechnology and bioengineering. 111, 359–371 (2014).
Unthan, Simon, Grünberger, Alexander, van Ooyen, Jan, Gätgens, Jochem, Heinrich, Johanna, Paczia, Nicole, Wiechert, Wolfgang, Kohlheyer, Dietrich, and Noack, Stephan. “Beyond growth rate 0.6. What drives Corynebacterium glutamicum to higher growth rates in defined medium”. Biotechnology and bioengineering 111.2 (2014): 359–371.

35 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates.
Sasaki Y, Eng T, Herbert RA, Trinh J, Chen Y, Rodriguez A, Gladden J, Simmons BA, Petzold CJ, Mukhopadhyay A., Biotechnol Biofuels 12(), 2019
PMID: 30858878
Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips.
Ho P, Westerwalbesloh C, Kaganovitch E, Grünberger A, Neubauer P, Kohlheyer D, Lieres EV., Microorganisms 7(4), 2019
PMID: 31010155
Identifying the Growth Modulon of Corynebacterium glutamicum.
Haas T, Graf M, Nieß A, Busche T, Kalinowski J, Blombach B, Takors R., Front Microbiol 10(), 2019
PMID: 31134020
Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation.
Hornung R, Grünberger A, Westerwalbesloh C, Kohlheyer D, Gompper G, Elgeti J., J R Soc Interface 15(139), 2018
PMID: 29445038
Physiological Response of Corynebacterium glutamicum to Increasingly Nutrient-Rich Growth Conditions.
Graf M, Zieringer J, Haas T, Nieß A, Blombach B, Takors R., Front Microbiol 9(), 2018
PMID: 30210489
Germination and Growth Analysis of Streptomyces lividans at the Single-Cell Level Under Varying Medium Compositions.
Koepff J, Sachs CC, Wiechert W, Kohlheyer D, Nöh K, Oldiges M, Grünberger A., Front Microbiol 9(), 2018
PMID: 30524383
Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum under scale-down conditions: Blueprint for robustness to bioreactor inhomogeneities.
Limberg MH, Schulte J, Aryani T, Mahr R, Baumgart M, Bott M, Wiechert W, Oldiges M., Biotechnol Bioeng 114(3), 2017
PMID: 27641904
Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level.
Westerwalbesloh C, Grünberger A, Wiechert W, Kohlheyer D, von Lieres E., Microb Biotechnol 10(4), 2017
PMID: 28371389
Miniaturized and automated adaptive laboratory evolution: Evolving Corynebacterium glutamicum towards an improved d-xylose utilization.
Radek A, Tenhaef N, Müller MF, Brüsseler C, Wiechert W, Marienhagen J, Polen T, Noack S., Bioresour Technol 245(pt b), 2017
PMID: 28552568
Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.
Binder D, Drepper T, Jaeger KE, Delvigne F, Wiechert W, Kohlheyer D, Grünberger A., Metab Eng 42(), 2017
PMID: 28645641
pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation.
Limberg MH, Joachim M, Klein B, Wiechert W, Oldiges M., J Biotechnol 259(), 2017
PMID: 28837821
Beyond the bulk: disclosing the life of single microbial cells.
Rosenthal K, Oehling V, Dusny C, Schmid A., FEMS Microbiol Rev 41(6), 2017
PMID: 29029257
Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli.
Okai N, Miyoshi T, Takeshima Y, Kuwahara H, Ogino C, Kondo A., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26392137
Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum.
Kallscheuer N, Vogt M, Kappelmann J, Krumbach K, Noack S, Bott M, Marienhagen J., Appl Microbiol Biotechnol 100(4), 2016
PMID: 26610800
Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
Feng L, Zhang Y, Fu J, Mao Y, Chen T, Zhao X, Wang Z., Biotechnol Bioeng 113(6), 2016
PMID: 26616115
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments.
Sachs CC, Grünberger A, Helfrich S, Probst C, Wiechert W, Kohlheyer D, Nöh K., PLoS One 11(9), 2016
PMID: 27661996
A Toolbox of Genetically Encoded FRET-Based Biosensors for Rapid l-Lysine Analysis.
Steffen V, Otten J, Engelmann S, Radek A, Limberg M, Koenig BW, Noack S, Wiechert W, Pohl M., Sensors (Basel) 16(10), 2016
PMID: 27690044
Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β-d-Thiogalactopyranoside for Light-Mediated Optimization of lac Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum.
Binder D, Frohwitter J, Mahr R, Bier C, Grünberger A, Loeschcke A, Peters-Wendisch P, Kohlheyer D, Pietruszka J, Frunzke J, Jaeger KE, Wendisch VF, Drepper T., Appl Environ Microbiol 82(20), 2016
PMID: 27520809
Absolute quantification of Corynebacterium glutamicum glycolytic and anaplerotic enzymes by QconCAT.
Voges R, Corsten S, Wiechert W, Noack S., J Proteomics 113(), 2015
PMID: 25451015
Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping.
Unthan S, Radek A, Wiechert W, Oldiges M, Noack S., Microb Cell Fact 14(), 2015
PMID: 25888907
Technical bias of microcultivation environments on single-cell physiology.
Dusny C, Grünberger A, Probst C, Wiechert W, Kohlheyer D, Schmid A., Lab Chip 15(8), 2015
PMID: 25710324
Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.
Westerwalbesloh C, Grünberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E., Lab Chip 15(21), 2015
PMID: 26345659
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grünberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Nöh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester.
Krämer CE, Singh A, Helfrich S, Grünberger A, Wiechert W, Nöh K, Kohlheyer D., PLoS One 10(10), 2015
PMID: 26513257
Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.
Mustafi N, Grünberger A, Mahr R, Helfrich S, Nöh K, Blombach B, Kohlheyer D, Frunzke J., PLoS One 9(1), 2014
PMID: 24465669
Single-cell microfluidics: opportunity for bioprocess development.
Grünberger A, Wiechert W, Kohlheyer D., Curr Opin Biotechnol 29(), 2014
PMID: 24642389
Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG.
Binder D, Grünberger A, Loeschcke A, Probst C, Bier C, Pietruszka J, Wiechert W, Kohlheyer D, Jaeger KE, Drepper T., Integr Biol (Camb) 6(8), 2014
PMID: 24894989

36 References

Daten bereitgestellt von Europe PubMed Central.

Ethanol catabolism in Corynebacterium glutamicum.
Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 15(4), 2007
PMID: 17693703
Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on D-glucose and L-lactate.
Baumchen C, Knoll A, Husemann B, Seletzky J, Maier B, Dietrich C, Amoabediny G, Buchs J., J. Biotechnol. 128(4), 2007
PMID: 17275119
Minimum information about a microarray experiment (MIAME)-toward standards for microarray data.
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M., Nat. Genet. 29(4), 2001
PMID: 11726920
Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum.
Cremer J, Treptow C, Eggeling L, Sahm H., J. Gen. Microbiol. 134(12), 1988
PMID: 3151991

Eggeling, 2005
Iron-sulfur cluster biosynthesis in bacteria: Mechanisms of cluster assembly and transfer.
Fontecave M, Ollagnier-de-Choudens S., Arch. Biochem. Biophys. 474(2), 2007
PMID: 18191630
A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
Grunberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Noack S, Wiechert W, Kohlheyer D., Lab Chip 12(11), 2012
PMID: 22511122
Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation.
Gruenberger A, Probst C, Heyer A, Wiechert W, Frunzke J, Kohlheyer D., J Vis Exp (82), 2013
PMID: 24336165
Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments.
Grunberger A, van Ooyen J, Paczia N, Rohe P, Schiendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 110(1), 2012
PMID: 22890752
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Studies on the amino acid fermentation. Part I. Production of L-glutamic acid by various microorganisms
Kinoshita, J Gen Appl Microbiol 3(), 1957
Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium.
Kramer R, Lambert C, Hoischen C, Ebbighausen H., Eur. J. Biochem. 194(3), 1990
PMID: 1980106
Requirement of chelating compounds for the growth of corynebacterium-glutamicum in synthetic media
Liebl, Appl Microbiol Biotechnol 32(2), 1989
Vanillate metabolism in Corynebacterium glutamicum.
Merkens H, Beckers G, Wirtz A, Burkovski A., Curr. Microbiol. 51(1), 2005
PMID: 15971090
Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
Nesvera J, Patek M., Appl. Microbiol. Biotechnol. 90(5), 2011
PMID: 21519933
Stationary versus non-stationary (13)C-MFA: a comparison using a consistent dataset.
Noack S, Noh K, Moch M, Oldiges M, Wiechert W., J. Biotechnol. 154(2-3), 2010
PMID: 20638432
Design of a defined medium for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake
Osten, Biotechnol Lett 11(1), 1989
Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms.
Paczia N, Nilgen A, Lehmann T, Gatgens J, Wiechert W, Noack S., Microb. Cell Fact. 11(), 2012
PMID: 22963408
Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.
Polen T, Wendisch VF., Appl. Biochem. Biotechnol. 118(1-3), 2004
PMID: 15304751
Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0.
Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO., Nat Protoc 6(9), 2011
PMID: 21886097
Error propagation analysis for quantitative intracellular metabolomics.
Tillack J, Paczia N, Noh K, Wiechert W, Noack S., Metabolites 2(4), 2012
PMID: 24957773
Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity.
van Ooyen J, Noack S, Bott M, Reth A, Eggeling L., Biotechnol. Bioeng. 109(8), 2012
PMID: 22392073
MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria.
Varela C, Rittmann D, Singh A, Krumbach K, Bhatt K, Eggeling L, Besra GS, Bhatt A., Chem. Biol. 19(4), 2012
PMID: 22520756
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J. Biotechnol. 124(1), 2006
PMID: 16406159
The DtxR regulon of Corynebacterium glutamicum.
Wennerhold J, Bott M., J. Bacteriol. 188(8), 2006
PMID: 16585752
Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics.
Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M., Appl. Environ. Microbiol. 76(20), 2010
PMID: 20802079
Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli.
Yao Z, Davis RM, Kishony R, Kahne D, Ruiz N., Proc. Natl. Acad. Sci. U.S.A. 109(38), 2012
PMID: 22908292


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 23996851
PubMed | Europe PMC

Suchen in

Google Scholar