Taking Control over Control: Use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways

Schendzielorz G, Dippong M, Grünberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L (2014)
ACS Synthetic Biology 3(1): 21–29.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schendzielorz, Georg; Dippong, Martin; Grünberger, AlexanderUniBi; Kohlheyer, Dietrich; Yoshida, Ayako; Binder, Stephan; Nishiyama, Chiharu; Nishiyama, Makoto; Bott, Michael; Eggeling, Lothar
Abstract / Bemerkung
Enzymes initiating the biosynthesis of cellular building blocks are frequently inhibited by the end-product of the respective pathway. Here we present an approach to rapidly generate sets of enzymes overriding this control. It is based on the in vivo detection of the desired end-product in single cells using a genetically encoded sensor. The sensor transmits intracellular product concentrations into a graded optical output, thus enabling ultrahigh-throughput screens by FACS. We randomly mutagenized plasmid-encoded ArgB of Corynebacterium glutamicum and screened the library in a strain carrying the sensor pSenLys-Spc, which detects l-lysine, l-arginine and l-histidine. Six of the resulting N-acetyl-l-glutamate kinase proteins were further developed and characterized and found to be at least 20-fold less sensitive toward l-arginine inhibition than the wild-type enzyme. Overexpression of the mutein ArgB-K47H-V65A in C. glutamicumΔargR led to the accumulation of 34 mM l-arginine in the culture medium. We also screened mutant libraries of lysC-encoded aspartate kinase and hisG-encoded ATP phosphoribosyltransferase. We isolated 11 LysC muteins, enabling up to 45 mM l-lysine accumulation, and 13 HisG muteins, enabling up to 17 mM l-histidine accumulation. These results demonstrate that in vivo screening of enzyme libraries by using metabolite sensors is extremely well suited to identify high-performance muteins required for overproduction.
Stichworte
allosteric enzymes; fluorescence-activated cell sorting (FACS); flux control; library screening; metabolite sensor; product sensing; single-cell analysis
Erscheinungsjahr
2014
Zeitschriftentitel
ACS Synthetic Biology
Band
3
Ausgabe
1
Seite(n)
21–29
ISSN
2161-5063
eISSN
2161-5063
Page URI
https://pub.uni-bielefeld.de/record/2912605

Zitieren

Schendzielorz G, Dippong M, Grünberger A, et al. Taking Control over Control: Use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways. ACS Synthetic Biology. 2014;3(1):21–29.
Schendzielorz, G., Dippong, M., Grünberger, A., Kohlheyer, D., Yoshida, A., Binder, S., Nishiyama, C., et al. (2014). Taking Control over Control: Use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways. ACS Synthetic Biology, 3(1), 21–29. doi:10.1021/sb400059y
Schendzielorz, Georg, Dippong, Martin, Grünberger, Alexander, Kohlheyer, Dietrich, Yoshida, Ayako, Binder, Stephan, Nishiyama, Chiharu, Nishiyama, Makoto, Bott, Michael, and Eggeling, Lothar. 2014. “Taking Control over Control: Use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways”. ACS Synthetic Biology 3 (1): 21–29.
Schendzielorz, G., Dippong, M., Grünberger, A., Kohlheyer, D., Yoshida, A., Binder, S., Nishiyama, C., Nishiyama, M., Bott, M., and Eggeling, L. (2014). Taking Control over Control: Use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways. ACS Synthetic Biology 3, 21–29.
Schendzielorz, G., et al., 2014. Taking Control over Control: Use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways. ACS Synthetic Biology, 3(1), p 21–29.
G. Schendzielorz, et al., “Taking Control over Control: Use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways”, ACS Synthetic Biology, vol. 3, 2014, pp. 21–29.
Schendzielorz, G., Dippong, M., Grünberger, A., Kohlheyer, D., Yoshida, A., Binder, S., Nishiyama, C., Nishiyama, M., Bott, M., Eggeling, L.: Taking Control over Control: Use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways. ACS Synthetic Biology. 3, 21–29 (2014).
Schendzielorz, Georg, Dippong, Martin, Grünberger, Alexander, Kohlheyer, Dietrich, Yoshida, Ayako, Binder, Stephan, Nishiyama, Chiharu, Nishiyama, Makoto, Bott, Michael, and Eggeling, Lothar. “Taking Control over Control: Use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways”. ACS Synthetic Biology 3.1 (2014): 21–29.

35 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Establishment of BmoR-based biosensor to screen isobutanol overproducer.
Yu H, Wang N, Huo W, Zhang Y, Zhang W, Yang Y, Chen Z, Huo YX., Microb Cell Fact 18(1), 2019
PMID: 30732651
Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum.
Schwentner A, Feith A, Münch E, Stiefelmaier J, Lauer I, Favilli L, Massner C, Öhrlein J, Grund B, Hüser A, Takors R, Blombach B., Biotechnol Biofuels 12(), 2019
PMID: 30962820
Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
Chen XF, Xia XX, Lee SY, Qian ZG., Biotechnol Bioeng 115(4), 2018
PMID: 29251347
In vivo biosensors: mechanisms, development, and applications.
Shi S, Ang EL, Zhao H., J Ind Microbiol Biotechnol 45(7), 2018
PMID: 29380152
Transcription Factor-Based Biosensors in High-Throughput Screening: Advances and Applications.
Cheng F, Tang XL, Kardashliev T., Biotechnol J 13(7), 2018
PMID: 29485214
Allosteric Activation Shifts the Rate-Limiting Step in a Short-Form ATP Phosphoribosyltransferase.
Fisher G, Thomson CM, Stroek R, Czekster CM, Hirschi JS, da Silva RG., Biochemistry 57(29), 2018
PMID: 29940105
NADPH-related processes studied with a SoxR-based biosensor in Escherichia coli.
Spielmann A, Baumgart M, Bott M., Microbiologyopen (), 2018
PMID: 30585443
Tailor-made transcriptional biosensors for optimizing microbial cell factories.
De Paepe B, Peters G, Coussement P, Maertens J, De Mey M., J Ind Microbiol Biotechnol 44(4-5), 2017
PMID: 27837353
Reengineering of the feedback-inhibition enzyme N-acetyl-L-glutamate kinase to enhance L-arginine production in Corynebacterium crenatum.
Zhang J, Xu M, Ge X, Zhang X, Yang T, Xu Z, Rao Z., J Ind Microbiol Biotechnol 44(2), 2017
PMID: 28005186
Production of amino acids - Genetic and metabolic engineering approaches.
Lee JH, Wendisch VF., Bioresour Technol 245(pt b), 2017
PMID: 28552565
Assessing glycolytic flux alterations resulting from genetic perturbations in E. coli using a biosensor.
Lehning CE, Siedler S, Ellabaan MMH, Sommer MOA., Metab Eng 42(), 2017
PMID: 28709932
Transcription factor-based biosensors in biotechnology: current state and future prospects.
Mahr R, Frunzke J., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26521244
Controlling the transcription levels of argGH redistributed L-arginine metabolic flux in N-acetylglutamate kinase and ArgR-deregulated Corynebacterium crenatum.
Zhao Q, Luo Y, Dou W, Zhang X, Zhang X, Zhang W, Xu M, Geng Y, Rao Z, Xu Z., J Ind Microbiol Biotechnol 43(1), 2016
PMID: 26521658
Biosensor-based engineering of biosynthetic pathways.
Rogers JK, Taylor ND, Church GM., Curr Opin Biotechnol 42(), 2016
PMID: 26998575
Updates on industrial production of amino acids using Corynebacterium glutamicum.
Wendisch VF, Jorge JMP, Pérez-García F, Sgobba E., World J Microbiol Biotechnol 32(6), 2016
PMID: 27116971
Screening of an Escherichia coli promoter library for a phenylalanine biosensor.
Mahr R, von Boeselager RF, Wiechert J, Frunzke J., Appl Microbiol Biotechnol 100(15), 2016
PMID: 27170323
Review of methods to probe single cell metabolism and bioenergetics.
Vasdekis AE, Stephanopoulos G., Metab Eng 27(), 2015
PMID: 25448400
Synthetic biology advances for pharmaceutical production.
Breitling R, Takano E., Curr Opin Biotechnol 35(), 2015
PMID: 25744872
A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum.
Eggeling L, Bott M., Appl Microbiol Biotechnol 99(8), 2015
PMID: 25761623
Fermentative production of the diamine putrescine: system metabolic engineering of corynebacterium glutamicum.
Nguyen AQ, Schneider J, Reddy GK, Wendisch VF., Metabolites 5(2), 2015
PMID: 25919117
Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum.
Zhang B, Zhou N, Liu YM, Liu C, Lou CB, Jiang CY, Liu SJ., Microb Cell Fact 14(), 2015
PMID: 25981633
Developing a high-throughput screening method for threonine overproduction based on an artificial promoter.
Liu Y, Li Q, Zheng P, Zhang Z, Liu Y, Sun C, Cao G, Zhou W, Wang X, Zhang D, Zhang T, Sun J, Ma Y., Microb Cell Fact 14(), 2015
PMID: 26296345
Ethylene-forming enzyme and bioethylene production.
Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L, Gill R, Maness PC, Yu J., Biotechnol Biofuels 7(1), 2014
PMID: 24589138
Principles of genetic circuit design.
Brophy JA, Voigt CA., Nat Methods 11(5), 2014
PMID: 24781324
Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG.
Binder D, Grünberger A, Loeschcke A, Probst C, Bier C, Pietruszka J, Wiechert W, Kohlheyer D, Jaeger KE, Drepper T., Integr Biol (Camb) 6(8), 2014
PMID: 24894989

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23829416
PubMed | Europe PMC

Suchen in

Google Scholar