Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes

Probst C, Grünberger A, Wiechert W, Kohlheyer D (2013)
Journal of microbiological methods 95(3): 470-476.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Erscheinungsjahr
Zeitschriftentitel
Journal of microbiological methods
Band
95
Ausgabe
3
Seite(n)
470 - 476
ISSN
PUB-ID

Zitieren

Probst C, Grünberger A, Wiechert W, Kohlheyer D. Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes. Journal of microbiological methods. 2013;95(3):470-476.
Probst, C., Grünberger, A., Wiechert, W., & Kohlheyer, D. (2013). Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes. Journal of microbiological methods, 95(3), 470-476. doi:10.1016/j.mimet.2013.09.002
Probst, C., Grünberger, A., Wiechert, W., and Kohlheyer, D. (2013). Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes. Journal of microbiological methods 95, 470-476.
Probst, C., et al., 2013. Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes. Journal of microbiological methods, 95(3), p 470-476.
C. Probst, et al., “Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes”, Journal of microbiological methods, vol. 95, 2013, pp. 470-476.
Probst, C., Grünberger, A., Wiechert, W., Kohlheyer, D.: Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes. Journal of microbiological methods. 95, 470-476 (2013).
Probst, Christopher, Grünberger, Alexander, Wiechert, Wolfgang, and Kohlheyer, Dietrich. “Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes”. Journal of microbiological methods 95.3 (2013): 470-476.

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips.
Ho P, Westerwalbesloh C, Kaganovitch E, Grünberger A, Neubauer P, Kohlheyer D, Lieres EV., Microorganisms 7(4), 2019
PMID: 31010155
Predictive modeling of microbial single cells: A review.
Ding T, Liao XY, Dong QL, Xuan XT, Chen SG, Ye XQ, Liu DH., Crit Rev Food Sci Nutr 58(5), 2018
PMID: 27624057
Simple and Precise Counting of Viable Bacteria by Resazurin-Amplified Picoarray Detection.
Hsieh K, Zec HC, Chen L, Kaushik AM, Mach KE, Liao JC, Wang TH., Anal Chem 90(15), 2018
PMID: 29969556
Single Cell Isolation Using Optical Tweezers.
Keloth A, Anderson O, Risbridger D, Paterson L., Micromachines (Basel) 9(9), 2018
PMID: 30424367
Single cell isolation process with laser induced forward transfer.
Deng Y, Renaud P, Guo Z, Huang Z, Chen Y., J Biol Eng 11(), 2017
PMID: 28101134
Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses.
Delvigne F, Baert J, Sassi H, Fickers P, Grünberger A, Dusny C., Biotechnol J 12(7), 2017
PMID: 28544731
Beyond the bulk: disclosing the life of single microbial cells.
Rosenthal K, Oehling V, Dusny C, Schmid A., FEMS Microbiol Rev 41(6), 2017
PMID: 29029257
Microfluidics and microbial engineering.
Kou S, Cheng D, Sun F, Hsing IM., Lab Chip 16(3), 2016
PMID: 26758660
Single cells in confined volumes: microchambers and microdroplets.
Hümmer D, Kurth F, Naredi-Rainer N, Dittrich PS., Lab Chip 16(3), 2016
PMID: 26758781
Microfluidic tools toward industrial biotechnology.
Oliveira AF, Pessoa AC, Bastos RG, de la Torre LG., Biotechnol Prog 32(6), 2016
PMID: 27578241
Review of methods to probe single cell metabolism and bioenergetics.
Vasdekis AE, Stephanopoulos G., Metab Eng 27(), 2015
PMID: 25448400
Technical bias of microcultivation environments on single-cell physiology.
Dusny C, Grünberger A, Probst C, Wiechert W, Kohlheyer D, Schmid A., Lab Chip 15(8), 2015
PMID: 25710324
Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.
Westerwalbesloh C, Grünberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E., Lab Chip 15(21), 2015
PMID: 26345659
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grünberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Nöh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG.
Binder D, Grünberger A, Loeschcke A, Probst C, Bier C, Pietruszka J, Wiechert W, Kohlheyer D, Jaeger KE, Drepper T., Integr Biol (Camb) 6(8), 2014
PMID: 24894989

24 References

Daten bereitgestellt von Europe PubMed Central.

Theoretical models for the regulation of DNA replication in fast-growing bacteria
Creutziger, New J. Phys. 14(), 2012
Dynamic single cell culture array.
Di Carlo D, Wu LY, Lee LP., Lab Chip 6(11), 2006
PMID: 17066168
Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments.
Dochow S, Krafft C, Neugebauer U, Bocklitz T, Henkel T, Mayer G, Albert J, Popp J., Lab Chip 11(8), 2011
PMID: 21340095
A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes.
Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksor M, Hohmann S, Nystrom T, Hanstorp D., Lab Chip 7(1), 2006
PMID: 17180207
A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
Grunberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Noack S, Wiechert W, Kohlheyer D., Lab Chip 12(11), 2012
PMID: 22511122
Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments.
Grunberger A, van Ooyen J, Paczia N, Rohe P, Schiendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 110(1), 2012
PMID: 22890752
Microfluidic Picoliter Bioreactor For Microbial Single-Cell Analysis: fabrication, System Setup And Operation
Gruenberger, J. Vis. Exp. (), 2013
Morphological plasticity as a bacterial survival strategy.
Justice SS, Hunstad DA, Cegelski L, Hultgren SJ., Nat. Rev. Microbiol. 6(2), 2008
PMID: 18157153
Intuitive, image-based cell sorting using optofluidic cell sorting.
Kovac JR, Voldman J., Anal. Chem. 79(24), 2007
PMID: 18004819
Nanomanipulation of single influenza virus using dielectrophoretic concentration and optical tweezers for single virus infection to a specific cell on a microfluidic chip
Maruyama, Microfluid. Nanofluid. 10(), 2011
Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle.
Matsumura K, Yagi T, Hattori A, Soloviev M, Yasuda K., J Nanobiotechnology 8(), 2010
PMID: 20868509
The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids.
Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J., Metab. Eng. 14(4), 2012
PMID: 22583745
Optical trapping.
Neuman KC, Block SM., Rev Sci Instrum 75(9), 2004
PMID: 16878180
A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection.
Salehi-Reyhani A, Kaplinsky J, Burgin E, Novakova M, deMello AJ, Templer RH, Parker P, Neil MA, Ces O, French P, Willison KR, Klug D., Lab Chip 11(7), 2011
PMID: 21347466
Taking Control over Control: use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways, ACS Synth
Schendzielorz, Biol. (), 2013
Control of cell division in bacteria.
Slater M, Schaechter M., Bacteriol Rev 38(2), 1974
PMID: 4209200
Biological applications of optical forces.
Svoboda K, Block SM., Annu Rev Biophys Biomol Struct 23(), 1994
PMID: 7919782
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium
Unthan, Biotech. Bioeng. (), 2013
Robust growth of Escherichia coli.
Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S., Curr. Biol. 20(12), 2010
PMID: 20537537
Optical tweezers directed one-bead one-sequence synthesis of oligonucleotides.
Wang T, Oehrlein S, Somoza MM, Perez JR, Kershner R, Cerrina F., Lab Chip 11(9), 2011
PMID: 21445444

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24041615
PubMed | Europe PMC

Suchen in

Google Scholar