Modeling and CFD Simulation of nutrient Distribution in picoliter bioreactors for bacterial growth studies on single-cell level

Westerwalbesloh C, Grünberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E (2015)
Lab on a chip 15(21): 4177-4186.

Download
OA 6.09 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ; ; ;
Abstract / Bemerkung
A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems.
Erscheinungsjahr
Zeitschriftentitel
Lab on a chip
Band
15
Ausgabe
21
Seite(n)
4177-4186
eISSN
PUB-ID

Zitieren

Westerwalbesloh C, Grünberger A, Stute B, et al. Modeling and CFD Simulation of nutrient Distribution in picoliter bioreactors for bacterial growth studies on single-cell level. Lab on a chip. 2015;15(21):4177-4186.
Westerwalbesloh, C., Grünberger, A., Stute, B., Weber, S., Wiechert, W., Kohlheyer, D., & von Lieres, E. (2015). Modeling and CFD Simulation of nutrient Distribution in picoliter bioreactors for bacterial growth studies on single-cell level. Lab on a chip, 15(21), 4177-4186. doi:10.1039/C5LC00646e
Westerwalbesloh, C., Grünberger, A., Stute, B., Weber, S., Wiechert, W., Kohlheyer, D., and von Lieres, E. (2015). Modeling and CFD Simulation of nutrient Distribution in picoliter bioreactors for bacterial growth studies on single-cell level. Lab on a chip 15, 4177-4186.
Westerwalbesloh, C., et al., 2015. Modeling and CFD Simulation of nutrient Distribution in picoliter bioreactors for bacterial growth studies on single-cell level. Lab on a chip, 15(21), p 4177-4186.
C. Westerwalbesloh, et al., “Modeling and CFD Simulation of nutrient Distribution in picoliter bioreactors for bacterial growth studies on single-cell level”, Lab on a chip, vol. 15, 2015, pp. 4177-4186.
Westerwalbesloh, C., Grünberger, A., Stute, B., Weber, S., Wiechert, W., Kohlheyer, D., von Lieres, E.: Modeling and CFD Simulation of nutrient Distribution in picoliter bioreactors for bacterial growth studies on single-cell level. Lab on a chip. 15, 4177-4186 (2015).
Westerwalbesloh, Christoph, Grünberger, Alexander, Stute, Birgit, Weber, Sophie, Wiechert, Wolfgang, Kohlheyer, Dietrich, and von Lieres, Eric. “Modeling and CFD Simulation of nutrient Distribution in picoliter bioreactors for bacterial growth studies on single-cell level”. Lab on a chip 15.21 (2015): 4177-4186.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Name
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-07-11T10:05:50Z

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips.
Ho P, Westerwalbesloh C, Kaganovitch E, Grünberger A, Neubauer P, Kohlheyer D, Lieres EV., Microorganisms 7(4), 2019
PMID: 31010155
Laboratory-scale photobiotechnology-current trends and future perspectives.
Morschett H, Loomba V, Huber G, Wiechert W, von Lieres E, Oldiges M., FEMS Microbiol Lett 365(1), 2018
PMID: 29126108
Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation.
Hornung R, Grünberger A, Westerwalbesloh C, Kohlheyer D, Gompper G, Elgeti J., J R Soc Interface 15(139), 2018
PMID: 29445038
Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level.
Westerwalbesloh C, Grünberger A, Wiechert W, Kohlheyer D, von Lieres E., Microb Biotechnol 10(4), 2017
PMID: 28371389
Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses.
Delvigne F, Baert J, Sassi H, Fickers P, Grünberger A, Dusny C., Biotechnol J 12(7), 2017
PMID: 28544731
Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.
Binder D, Drepper T, Jaeger KE, Delvigne F, Wiechert W, Kohlheyer D, Grünberger A., Metab Eng 42(), 2017
PMID: 28645641
Beyond the bulk: disclosing the life of single microbial cells.
Rosenthal K, Oehling V, Dusny C, Schmid A., FEMS Microbiol Rev 41(6), 2017
PMID: 29029257
Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester.
Krämer CE, Singh A, Helfrich S, Grünberger A, Wiechert W, Nöh K, Kohlheyer D., PLoS One 10(10), 2015
PMID: 26513257

39 References

Daten bereitgestellt von Europe PubMed Central.

Single-cell microfluidics: opportunity for bioprocess development.
Grunberger A, Wiechert W, Kohlheyer D., Curr. Opin. Biotechnol. 29(), 2014
PMID: 24642389
Disposable microfluidic devices: fabrication, function, and application.
Fiorini GS, Chiu DT., BioTechniques 38(3), 2005
PMID: 15786809

Shi, Crit. Rev. Biotechnol. (), 2014
Microfabrication meets microbiology.
Weibel DB, Diluzio WR, Whitesides GM., Nat. Rev. Microbiol. 5(3), 2007
PMID: 17304250
Membrane-aerated microbioreactor for high-throughput bioprocessing.
Zanzotto A, Szita N, Boccazzi P, Lessard P, Sinskey AJ, Jensen KF., Biotechnol. Bioeng. 87(2), 2004
PMID: 15236254
High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments.
Sun P, Liu Y, Sha J, Zhang Z, Tu Q, Chen P, Wang J., Biosens Bioelectron 26(5), 2010
PMID: 20880691
The Envirostat - a new bioreactor concept.
Kortmann H, Chasanis P, Blank LM, Franzke J, Kenig EY, Schmid A., Lab Chip 9(4), 2008
PMID: 19190793
Robust growth of Escherichia coli.
Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S., Curr. Biol. 20(12), 2010
PMID: 20537537
Streaming instability in growing cell populations.
Mather W, Mondragon-Palomino O, Danino T, Hasty J, Tsimring LS., Phys. Rev. Lett. 104(20), 2010
PMID: 20867071
Physics and applications of microfluidics in biology.
Beebe DJ, Mensing GA, Walker GM., Annu Rev Biomed Eng 4(), 2002
PMID: 12117759
Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes.
Probst C, Grunberger A, Wiechert W, Kohlheyer D., J. Microbiol. Methods 95(3), 2013
PMID: 24041615

Probst, Anal. Methods 7(), 2015
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Unthan S, Grunberger A, van Ooyen J, Gatgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 111(2), 2013
PMID: 23996851
Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG.
Binder D, Grunberger A, Loeschcke A, Probst C, Bier C, Pietruszka J, Wiechert W, Kohlheyer D, Jaeger KE, Drepper T., Integr Biol (Camb) 6(8), 2014
PMID: 24894989
Technical bias of microcultivation environments on single-cell physiology.
Dusny C, Grunberger A, Probst C, Wiechert W, Kohlheyer D, Schmid A., Lab Chip 15(8), 2015
PMID: 25710324
A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
Grunberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Noack S, Wiechert W, Kohlheyer D., Lab Chip 12(11), 2012
PMID: 22511122
Biotechnology at low Reynolds numbers.
Brody JP, Yager P, Goldstein RE, Austin RH., Biophys. J. 71(6), 1996
PMID: 8968612
Vizardous: interactive analysis of microbial populations with single cell resolution.
Helfrich S, Azzouzi CE, Probst C, Seiffarth J, Grunberger A, Wiechert W, Kohlheyer D, Noh K., Bioinformatics 31(23), 2015
PMID: 26261223
Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments.
Fritzsch FS, Rosenthal K, Kampert A, Howitz S, Dusny C, Blank LM, Schmid A., Lab Chip 13(3), 2013
PMID: 23223864

Deen, 1998

Comesaña, J. Chem. Eng. Data 48(), 2003
Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids.
Bocquet L, Barrat JL., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(4), 1994
PMID: 9961573

Khan, Biochem. Eng. J. 25(), 2005

Gladden, J. Am. Chem. Soc. 75(), 1953

Ribeiro, J. Solution Chem. 34(), 2005

Srinivas, Fluid Phase Equilib. 301(), 2011

Villadsen, 2011

Monod, Annu. Rev. Microbiol. 3(), 1949

Lee, Appl. Microbiol. Biotechnol. 49(), 1998
On the relation between dry matter and volume of bacteria.
Norland S, Heldal M, Tumyr O., Microb. Ecol. 13(2), 1987
PMID: 24213208

Mahlmann, Eur. J. Phycol. 43(), 2008
Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.
Okino S, Suda M, Fujikura K, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 78(3), 2008
PMID: 18188553
Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments.
Grunberger A, van Ooyen J, Paczia N, Rohe P, Schiendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 110(1), 2012
PMID: 22890752
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grunberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Noh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26345659
PubMed | Europe PMC

Suchen in

Google Scholar