Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester
Krämer CEM, Singh A, Helfrich S, Grünberger A, Wiechert W, Nöh K, Kohlheyer D (2015)
PLoS one 10(10): e0141768.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
journal.pone.0141768.pdf
4.48 MB
Autor*in
Krämer, Christina E. M.;
Singh, Abhijeet;
Helfrich, Stefan;
Grünberger, AlexanderUniBi;
Wiechert, Wolfgang;
Nöh, Katharina;
Kohlheyer, Dietrich
Abstract / Bemerkung
Phase contrast microscopy cannot give sufficient information on bacterial metabolic activity, or if a cell is dead, it has the fate to die or it is in a viable but non-growing state. Thus, a reliable sensing of the metabolic activity helps to distinguish different categories of viability. We present a non-invasive instantaneous sensing method using a fluorogenic substrate for online monitoring of esterase activity and calcein efflux changes in growing wild type bacteria. The fluorescent conversion product of calcein acetoxymethyl ester (CAM) and its efflux indicates the metabolic activity of cells grown under different conditions at real-time. The dynamic conversion of CAM and the active efflux of fluorescent calcein were analyzed by combining microfluidic single cell cultivation technology and fluorescence time lapse microscopy. Thus, an instantaneous and non-invasive sensing method for apparent esterase activity was created without the requirement of genetic modification or harmful procedures. The metabolic activity sensing method consisting of esterase activity and calcein secretion was demonstrated in two applications. Firstly, growing colonies of our model organism Corynebacterium glutamicum were confronted with intermittent nutrient starvation by interrupting the supply of iron and carbon, respectively. Secondly, bacteria were exposed for one hour to fatal concentrations of antibiotics. Bacteria could be distinguished in growing and non-growing cells with metabolic activity as well as non-growing and non-fluorescent cells with no detectable esterase activity. Microfluidic single cell cultivation combined with high temporal resolution time-lapse microscopy facilitated monitoring metabolic activity of stressed cells and analyzing their descendants in the subsequent recovery phase. Results clearly show that the combination of CAM with a sampling free microfluidic approach is a powerful tool to gain insights in the metabolic activity of growing and non-growing bacteria.
Erscheinungsjahr
2015
Zeitschriftentitel
PLoS one
Band
10
Ausgabe
10
Art.-Nr.
e0141768
Urheberrecht / Lizenzen
ISBN
1932-6203
ISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2912554
Zitieren
Krämer CEM, Singh A, Helfrich S, et al. Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS one. 2015;10(10): e0141768.
Krämer, C. E. M., Singh, A., Helfrich, S., Grünberger, A., Wiechert, W., Nöh, K., & Kohlheyer, D. (2015). Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS one, 10(10), e0141768. doi:10.1371/journal.pone.0141768
Krämer, Christina E. M., Singh, Abhijeet, Helfrich, Stefan, Grünberger, Alexander, Wiechert, Wolfgang, Nöh, Katharina, and Kohlheyer, Dietrich. 2015. “Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester”. PLoS one 10 (10): e0141768.
Krämer, C. E. M., Singh, A., Helfrich, S., Grünberger, A., Wiechert, W., Nöh, K., and Kohlheyer, D. (2015). Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS one 10:e0141768.
Krämer, C.E.M., et al., 2015. Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS one, 10(10): e0141768.
C.E.M. Krämer, et al., “Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester”, PLoS one, vol. 10, 2015, : e0141768.
Krämer, C.E.M., Singh, A., Helfrich, S., Grünberger, A., Wiechert, W., Nöh, K., Kohlheyer, D.: Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS one. 10, : e0141768 (2015).
Krämer, Christina E. M., Singh, Abhijeet, Helfrich, Stefan, Grünberger, Alexander, Wiechert, Wolfgang, Nöh, Katharina, and Kohlheyer, Dietrich. “Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester”. PLoS one 10.10 (2015): e0141768.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
journal.pone.0141768.pdf
4.48 MB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:50Z
MD5 Prüfsumme
7f20c6ef2e31f3cecc8ec9be684b6f78
Daten bereitgestellt von European Bioinformatics Institute (EBI)
3 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives.
Heins AL, Weuster-Botz D., Bioprocess Biosyst Eng 41(7), 2018
PMID: 29541890
Heins AL, Weuster-Botz D., Bioprocess Biosyst Eng 41(7), 2018
PMID: 29541890
A Flow Cytometry Method for Rapidly Assessing Mycobacterium tuberculosis Responses to Antibiotics with Different Modes of Action.
Hendon-Dunn CL, Doris KS, Thomas SR, Allnutt JC, Marriott AA, Hatch KA, Watson RJ, Bottley G, Marsh PD, Taylor SC, Bacon J., Antimicrob Agents Chemother 60(7), 2016
PMID: 26902767
Hendon-Dunn CL, Doris KS, Thomas SR, Allnutt JC, Marriott AA, Hatch KA, Watson RJ, Bottley G, Marsh PD, Taylor SC, Bacon J., Antimicrob Agents Chemother 60(7), 2016
PMID: 26902767
Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion.
Krämer CE, Wiechert W, Kohlheyer D., Sci Rep 6(), 2016
PMID: 27580964
Krämer CE, Wiechert W, Kohlheyer D., Sci Rep 6(), 2016
PMID: 27580964
60 References
Daten bereitgestellt von Europe PubMed Central.
AUTHOR UNKNOWN, 1994
AUTHOR UNKNOWN, 1999
Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress.
Seletzky JM, Noack U, Fricke J, Hahn S, Buchs J., Appl. Microbiol. Biotechnol. 72(6), 2006
PMID: 16642330
Seletzky JM, Noack U, Fricke J, Hahn S, Buchs J., Appl. Microbiol. Biotechnol. 72(6), 2006
PMID: 16642330
Measuring the Stiffness of Bacterial Cells from Growth Rates in Hydrogels of Tunable Elasticity
AUTHOR UNKNOWN, 2012
AUTHOR UNKNOWN, 2012
Rapid electrochemical phenotypic profiling of antibiotic-resistant bacteria
AUTHOR UNKNOWN, 2015
AUTHOR UNKNOWN, 2015
Versatile, fully automated, microfluidic cell culture system.
Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR., Anal. Chem. 79(22), 2007
PMID: 17953452
Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR., Anal. Chem. 79(22), 2007
PMID: 17953452
Applications and advances of metabolite biosensors for metabolic engineering
AUTHOR UNKNOWN, 2015
AUTHOR UNKNOWN, 2015
Analysis of Bacterial Function by Multi-Colour Fluorescence Flow Cytometry and Single Cell Sorting
AUTHOR UNKNOWN, 2000
AUTHOR UNKNOWN, 2000
Recent advances in the development of synthetic chemical probes for glycosidase enzymes
AUTHOR UNKNOWN, 2015
AUTHOR UNKNOWN, 2015
Enzymatic substrates in microbiology.
Orenga S, James AL, Manafi M, Perry JD, Pincus DH., J. Microbiol. Methods 79(2), 2009
PMID: 19679151
Orenga S, James AL, Manafi M, Perry JD, Pincus DH., J. Microbiol. Methods 79(2), 2009
PMID: 19679151
Membrane Properties of Living Mammalian Cells As Studied by Enzymatic Hydrolysis of Fluorogenic Esters
AUTHOR UNKNOWN, 1965
AUTHOR UNKNOWN, 1965
AUTHOR UNKNOWN, 0
The microfluidic multitrap nanophysiometer for hematologic cancer cell characterization reveals temporal sensitivity of the calcein-AM efflux assay
AUTHOR UNKNOWN, 2014
AUTHOR UNKNOWN, 2014
Static and dynamic acute cytotoxicity assays on microfluidic devices.
Poulsen CR, Culbertson CT, Jacobson SC, Ramsey JM., Anal. Chem. 77(2), 2005
PMID: 15649069
Poulsen CR, Culbertson CT, Jacobson SC, Ramsey JM., Anal. Chem. 77(2), 2005
PMID: 15649069
CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity.
Lichtenfels R, Biddison WE, Schulz H, Vogt AB, Martin R., J. Immunol. Methods 172(2), 1994
PMID: 7518485
Lichtenfels R, Biddison WE, Schulz H, Vogt AB, Martin R., J. Immunol. Methods 172(2), 1994
PMID: 7518485
The use of fluorogenic esters to detect viable bacteria by flow cytometry
AUTHOR UNKNOWN, 1994
AUTHOR UNKNOWN, 1994
Use of fluorescent probes to assess physiological functions of bacteria at single-cell level.
Joux F, Lebaron P., Microbes Infect. 2(12), 2000
PMID: 11099939
Joux F, Lebaron P., Microbes Infect. 2(12), 2000
PMID: 11099939
Enumeration, viability and heterogeneity in Staphylococcus aureus cultures by flow cytometry
AUTHOR UNKNOWN, 1998
AUTHOR UNKNOWN, 1998
Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications.
Hammes F, Egli T., Anal Bioanal Chem 397(3), 2010
PMID: 20352197
Hammes F, Egli T., Anal Bioanal Chem 397(3), 2010
PMID: 20352197
Microbial analysis at the single-cell level : tasks and techniques
AUTHOR UNKNOWN, 2000
AUTHOR UNKNOWN, 2000
Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices
AUTHOR UNKNOWN, 2015
AUTHOR UNKNOWN, 2015
Rate of environmental change determines stress response specificity.
Young JW, Locke JC, Elowitz MB., Proc. Natl. Acad. Sci. U.S.A. 110(10), 2013
PMID: 23407164
Young JW, Locke JC, Elowitz MB., Proc. Natl. Acad. Sci. U.S.A. 110(10), 2013
PMID: 23407164
The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum.
Hartmann M, Barsch A, Niehaus K, Puhler A, Tauch A, Kalinowski J., Arch. Microbiol. 182(4), 2004
PMID: 15480574
Hartmann M, Barsch A, Niehaus K, Puhler A, Tauch A, Kalinowski J., Arch. Microbiol. 182(4), 2004
PMID: 15480574
Understanding anti-tuberculosis drug efficacy: rethinking bacterial populations and how we model them
AUTHOR UNKNOWN, 2015
AUTHOR UNKNOWN, 2015
Mycobacterium tuberculosis: success through dormancy.
Gengenbacher M, Kaufmann SH., FEMS Microbiol. Rev. 36(3), 2012
PMID: 22320122
Gengenbacher M, Kaufmann SH., FEMS Microbiol. Rev. 36(3), 2012
PMID: 22320122
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grunberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Noh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
Grunberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Noh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.
Westerwalbesloh C, Grunberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E., Lab Chip 15(21), 2015
PMID: 26345659
Westerwalbesloh C, Grunberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E., Lab Chip 15(21), 2015
PMID: 26345659
Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation.
Gruenberger A, Probst C, Heyer A, Wiechert W, Frunzke J, Kohlheyer D., J Vis Exp (82), 2013
PMID: 24336165
Gruenberger A, Probst C, Heyer A, Wiechert W, Frunzke J, Kohlheyer D., J Vis Exp (82), 2013
PMID: 24336165
Isoleucine Synthesis in Corynebacterium glutamicum: Molecular Analysis of the ilvB-ilvN-ilvC Operon
AUTHOR UNKNOWN, 1993
AUTHOR UNKNOWN, 1993
NIH Image to ImageJ: 25 years of image analysis
AUTHOR UNKNOWN, 2012
AUTHOR UNKNOWN, 2012
Fiji: an open-source platform for biological-image analysis.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A., Nat. Methods 9(7), 2012
PMID: 22743772
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A., Nat. Methods 9(7), 2012
PMID: 22743772
AUTHOR UNKNOWN, 2015
Ultrastructure of the Corynebacterium glutamicum cell wall.
Marienfeld S, Uhlemann EM, Schmid R, Kramer R, Burkovski A., Antonie Van Leeuwenhoek 72(4), 1997
PMID: 9442270
Marienfeld S, Uhlemann EM, Schmid R, Kramer R, Burkovski A., Antonie Van Leeuwenhoek 72(4), 1997
PMID: 9442270
Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays.
Di Carlo D, Aghdam N, Lee LP., Anal. Chem. 78(14), 2006
PMID: 16841912
Di Carlo D, Aghdam N, Lee LP., Anal. Chem. 78(14), 2006
PMID: 16841912
Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis.
Follmann M, Ochrombel I, Kramer R, Trotschel C, Poetsch A, Ruckert C, Huser A, Persicke M, Seiferling D, Kalinowski J, Marin K., BMC Genomics 10(), 2009
PMID: 20025733
Follmann M, Ochrombel I, Kramer R, Trotschel C, Poetsch A, Ruckert C, Huser A, Persicke M, Seiferling D, Kalinowski J, Marin K., BMC Genomics 10(), 2009
PMID: 20025733
Bacterial responses to photo-oxidative stress.
Ziegelhoffer EC, Donohue TJ., Nat. Rev. Microbiol. 7(12), 2009
PMID: 19881522
Ziegelhoffer EC, Donohue TJ., Nat. Rev. Microbiol. 7(12), 2009
PMID: 19881522
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Unthan S, Grunberger A, van Ooyen J, Gatgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 111(2), 2013
PMID: 23996851
Unthan S, Grunberger A, van Ooyen J, Gatgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 111(2), 2013
PMID: 23996851
Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms.
Manina G, Dhar N, McKinney JD., Cell Host Microbe 17(1), 2014
PMID: 25543231
Manina G, Dhar N, McKinney JD., Cell Host Microbe 17(1), 2014
PMID: 25543231
Boosting bacterial metabolism to combat antibiotic resistance.
Bhargava P, Collins JJ., Cell Metab. 21(2), 2015
PMID: 25651168
Bhargava P, Collins JJ., Cell Metab. 21(2), 2015
PMID: 25651168
Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria.
Peng B, Su YB, Li H, Han Y, Guo C, Tian YM, Peng XX., Cell Metab. 21(2), 2015
PMID: 25651179
Peng B, Su YB, Li H, Han Y, Guo C, Tian YM, Peng XX., Cell Metab. 21(2), 2015
PMID: 25651179
Rapid cytolysis of Mycobacterium tuberculosis by faropenem, an orally bioavailable β-lactam antibiotic.
Dhar N, Dubee V, Ballell L, Cuinet G, Hugonnet JE, Signorino-Gelo F, Barros D, Arthur M, McKinney JD., Antimicrob. Agents Chemother. 59(2), 2014
PMID: 25421469
Dhar N, Dubee V, Ballell L, Cuinet G, Hugonnet JE, Signorino-Gelo F, Barros D, Arthur M, McKinney JD., Antimicrob. Agents Chemother. 59(2), 2014
PMID: 25421469
ATP-dependent efflux of calcein by the multidrug resistance protein (MRP): no inhibition by intracellular glutathione depletion.
Feller N, Broxterman HJ, Wahrer DC, Pinedo HM., FEBS Lett. 368(2), 1995
PMID: 7628644
Feller N, Broxterman HJ, Wahrer DC, Pinedo HM., FEBS Lett. 368(2), 1995
PMID: 7628644
AUTHOR UNKNOWN, 2015
Microcalorimetric assays for measuring cell growth and metabolic activity: Methodology and applications
AUTHOR UNKNOWN, 2015
AUTHOR UNKNOWN, 2015
Rapid and specific SPRi detection of L. pneumophila in complex environmental water samples.
Foudeh AM, Trigui H, Mendis N, Faucher SP, Veres T, Tabrizian M., Anal Bioanal Chem 407(18), 2015
PMID: 25935681
Foudeh AM, Trigui H, Mendis N, Faucher SP, Veres T, Tabrizian M., Anal Bioanal Chem 407(18), 2015
PMID: 25935681
Detecting virulence and drug-resistance mycobacterial phenotypes in vivo
AUTHOR UNKNOWN, 2015
AUTHOR UNKNOWN, 2015
Cultivation-independent Assessment of Bacterial Viability
AUTHOR UNKNOWN, 2011
AUTHOR UNKNOWN, 2011
Bacterial luciferase reporters: the Swiss army knife of molecular biology.
Waidmann MS, Bleichrodt FS, Laslo T, Riedel CU., Bioeng Bugs 2(1), 2011
PMID: 21636983
Waidmann MS, Bleichrodt FS, Laslo T, Riedel CU., Bioeng Bugs 2(1), 2011
PMID: 21636983
Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride.
Ullrich S, Karrasch B, Hoppe H, Jeskulke K, Mehrens M., Appl. Environ. Microbiol. 62(12), 1996
PMID: 16535471
Ullrich S, Karrasch B, Hoppe H, Jeskulke K, Mehrens M., Appl. Environ. Microbiol. 62(12), 1996
PMID: 16535471
Requirement of Chelating Compounds for the Growth of Corynebacterium glutamicum in Synthetic Media
AUTHOR UNKNOWN, 1989
AUTHOR UNKNOWN, 1989
Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum.
Dertz EA, Stintzi A, Raymond KN., J. Biol. Inorg. Chem. 11(8), 2006
PMID: 16912897
Dertz EA, Stintzi A, Raymond KN., J. Biol. Inorg. Chem. 11(8), 2006
PMID: 16912897
The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR.
Wennerhold J, Krug A, Bott M., J. Biol. Chem. 280(49), 2005
PMID: 16179344
Wennerhold J, Krug A, Bott M., J. Biol. Chem. 280(49), 2005
PMID: 16179344
The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
Brune I, Werner H, Huser AT, Kalinowski J, Puhler A, Tauch A., BMC Genomics 7(), 2006
PMID: 16469103
Brune I, Werner H, Huser AT, Kalinowski J, Puhler A, Tauch A., BMC Genomics 7(), 2006
PMID: 16469103
Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network.
Schroder J, Tauch A., FEMS Microbiol. Rev. 34(5), 2010
PMID: 20491930
Schroder J, Tauch A., FEMS Microbiol. Rev. 34(5), 2010
PMID: 20491930
Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR.
Jungwirth B, Emer D, Brune I, Hansmeier N, Puhler A, Eikmanns BJ, Tauch A., FEMS Microbiol. Lett. 281(2), 2008
PMID: 18355281
Jungwirth B, Emer D, Brune I, Hansmeier N, Puhler A, Eikmanns BJ, Tauch A., FEMS Microbiol. Lett. 281(2), 2008
PMID: 18355281
Wake up! Peptidoglycan lysis and bacterial non-growth states.
Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B., Trends Microbiol. 14(6), 2006
PMID: 16675219
Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B., Trends Microbiol. 14(6), 2006
PMID: 16675219
AUTHOR UNKNOWN, 1998
Mapping the membrane proteome of Corynebacterium glutamicum.
Schluesener D, Fischer F, Kruip J, Rogner M, Poetsch A., Proteomics 5(5), 2005
PMID: 15717325
Schluesener D, Fischer F, Kruip J, Rogner M, Poetsch A., Proteomics 5(5), 2005
PMID: 15717325
Single-Cell Tracking Reveals Antibiotic-Induced Changes in Mycobacterial Energy Metabolism
AUTHOR UNKNOWN, 2015
AUTHOR UNKNOWN, 2015
AUTHOR UNKNOWN, 2014
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 26513257
PubMed | Europe PMC
Suchen in