Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform

Grünberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Nöh K, Frunzke J, Kohlheyer D (2015)
Cytometry / A 87(12): 1101–1115.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
Cell-to-cell heterogeneity typically evolves due to a manifold of biological and environmental factors and special phenotypes are often relevant for the fate of the whole population but challenging to detect during conventional analysis. We demonstrate a microfluidic single-cell cultivation platform that incorporates several hundred growth chambers, in which isogenic bacteria microcolonies growing in cell monolayers are tracked by automated time-lapse microscopy with spatiotemporal resolution. The device was not explicitly developed for a specific organism, but has a very generic configuration suitable for various different microbial organisms. In the present study, we analyzed Corynebacterium glutamicum microcolonies, thereby generating complete lineage trees and detailed single-cell data on division behavior and morphology in order to demonstrate the platform's overall capabilities. Furthermore, the occurrence of spontaneously induced stress in individual C. glutamicum cells was investigated by analyzing strains with genetically encoded reporter systems and optically visualizing SOS response. The experiments revealed spontaneous SOS induction in the absence of any external trigger comparable to results obtained by flow cytometry (FC) analyzing cell samples from conventional shake flask cultivation. Our microfluidic setup delivers detailed single-cell data with spatial and temporal resolution; complementary information to conventional FC results. © 2015 International Society for Advancement of Cytometry
Erscheinungsjahr
Zeitschriftentitel
Cytometry / A
Band
87
Ausgabe
12
Seite(n)
1101–1115
eISSN
PUB-ID

Zitieren

Grünberger A, Probst C, Helfrich S, et al. Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform. Cytometry / A. 2015;87(12):1101–1115.
Grünberger, A., Probst, C., Helfrich, S., Nanda, A., Stute, B., Wiechert, W., von Lieres, E., et al. (2015). Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform. Cytometry / A, 87(12), 1101–1115. doi:10.1002/cyto.a.22779
Grünberger, A., Probst, C., Helfrich, S., Nanda, A., Stute, B., Wiechert, W., von Lieres, E., Nöh, K., Frunzke, J., and Kohlheyer, D. (2015). Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform. Cytometry / A 87, 1101–1115.
Grünberger, A., et al., 2015. Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform. Cytometry / A, 87(12), p 1101–1115.
A. Grünberger, et al., “Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform”, Cytometry / A, vol. 87, 2015, pp. 1101–1115.
Grünberger, A., Probst, C., Helfrich, S., Nanda, A., Stute, B., Wiechert, W., von Lieres, E., Nöh, K., Frunzke, J., Kohlheyer, D.: Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform. Cytometry / A. 87, 1101–1115 (2015).
Grünberger, Alexander, Probst, Christopher, Helfrich, Stefan, Nanda, Arun, Stute, Birgit, Wiechert, Wolfgang, von Lieres, Eric, Nöh, Katharina, Frunzke, Julia, and Kohlheyer, Dietrich. “Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform”. Cytometry / A 87.12 (2015): 1101–1115.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Growth-dependent recombinant product formation kinetics can be reproduced through engineering of glucose transport and is prone to phenotypic heterogeneity.
Fragoso-Jiménez JC, Baert J, Nguyen TM, Liu W, Sassi H, Goormaghtigh F, Van Melderen L, Gaytán P, Hernández-Chávez G, Martinez A, Delvigne F, Gosset G., Microb Cell Fact 18(1), 2019
PMID: 30710996
Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips.
Ho P, Westerwalbesloh C, Kaganovitch E, Grünberger A, Neubauer P, Kohlheyer D, Lieres EV., Microorganisms 7(4), 2019
PMID: 31010155
A microfluidic photobioreactor for simultaneous observation and cultivation of single microalgal cells or cell aggregates.
Westerwalbesloh C, Brehl C, Weber S, Probst C, Widzgowski J, Grünberger A, Pfaff C, Nedbal L, Kohlheyer D., PLoS One 14(4), 2019
PMID: 31034529
Laboratory-scale photobiotechnology-current trends and future perspectives.
Morschett H, Loomba V, Huber G, Wiechert W, von Lieres E, Oldiges M., FEMS Microbiol Lett 365(1), 2018
PMID: 29126108
Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation.
Hornung R, Grünberger A, Westerwalbesloh C, Kohlheyer D, Gompper G, Elgeti J., J R Soc Interface 15(139), 2018
PMID: 29445038
A Novel Methodology for Characterizing Cell Subpopulations in Automated Time-lapse Microscopy.
Hattab G, Wiesmann V, Becker A, Munzner T, Nattkemper TW., Front Bioeng Biotechnol 6(), 2018
PMID: 29541635
Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production.
Kloss R, Limberg MH, Mackfeld U, Hahn D, Grünberger A, Jäger VD, Krauss U, Oldiges M, Pohl M., Sci Rep 8(1), 2018
PMID: 29643457
Simple and Precise Counting of Viable Bacteria by Resazurin-Amplified Picoarray Detection.
Hsieh K, Zec HC, Chen L, Kaushik AM, Mach KE, Liao JC, Wang TH., Anal Chem 90(15), 2018
PMID: 29969556
Natural biocide cocktails: Combinatorial antibiotic effects of prodigiosin and biosurfactants.
Hage-Hülsmann J, Grünberger A, Thies S, Santiago-Schübel B, Klein AS, Pietruszka J, Binder D, Hilgers F, Domröse A, Drepper T, Kohlheyer D, Jaeger KE, Loeschcke A., PLoS One 13(7), 2018
PMID: 30024935
Selective Pressure for Biofilm Formation in Bacillus subtilis: Differential Effect of Mutations in the Master Regulator SinR on Bistability.
Kampf J, Gerwig J, Kruse K, Cleverley R, Dormeyer M, Grünberger A, Kohlheyer D, Commichau FM, Lewis RJ, Lewis RJ, Stülke J., MBio 9(5), 2018
PMID: 30181249
Germination and Growth Analysis of Streptomyces lividans at the Single-Cell Level Under Varying Medium Compositions.
Koepff J, Sachs CC, Wiechert W, Kohlheyer D, Nöh K, Oldiges M, Grünberger A., Front Microbiol 9(), 2018
PMID: 30524383
Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level.
Westerwalbesloh C, Grünberger A, Wiechert W, Kohlheyer D, von Lieres E., Microb Biotechnol 10(4), 2017
PMID: 28371389
Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses.
Delvigne F, Baert J, Sassi H, Fickers P, Grünberger A, Dusny C., Biotechnol J 12(7), 2017
PMID: 28544731
Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.
Binder D, Drepper T, Jaeger KE, Delvigne F, Wiechert W, Kohlheyer D, Grünberger A., Metab Eng 42(), 2017
PMID: 28645641
Present and Future of Culturing Bacteria.
Overmann J, Abt B, Sikorski J., Annu Rev Microbiol 71(), 2017
PMID: 28731846
Engineering Microbial Metabolite Dynamics and Heterogeneity.
Schmitz AC, Hartline CJ, Zhang F., Biotechnol J 12(10), 2017
PMID: 28901715
Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation.
Binder D, Probst C, Grünberger A, Hilgers F, Loeschcke A, Jaeger KE, Kohlheyer D, Drepper T., PLoS One 11(8), 2016
PMID: 27525986
Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper.
Meyer V, Andersen MR, Brakhage AA, Braus GH, Caddick MX, Cairns TC, de Vries RP, Haarmann T, Hansen K, Hertz-Fowler C, Krappmann S, Mortensen UH, Peñalva MA, Ram AFJ, Head RM., Fungal Biol Biotechnol 3(), 2016
PMID: 28955465
Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.
Westerwalbesloh C, Grünberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E., Lab Chip 15(21), 2015
PMID: 26345659
Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester.
Krämer CE, Singh A, Helfrich S, Grünberger A, Wiechert W, Nöh K, Kohlheyer D., PLoS One 10(10), 2015
PMID: 26513257

43 References

Daten bereitgestellt von Europe PubMed Central.

Single-cell analysis in biotechnology, systems biology, and biocatalysis.
Fritzsch FS, Dusny C, Frick O, Schmid A., Annu Rev Chem Biomol Eng 3(), 2012
PMID: 22468600
Growth, cell and nuclear divisions in some bacteria.
SCHAECHTER M, WILLIAMSON JP, HOOD JR Jr, KOCH AL., J. Gen. Microbiol. 29(), 1962
PMID: 13976593
A novel method for measuring lag times in division of individual bacterial cells using image analysis.
Niven GW, Fuks T, Morton JS, Rua SA, Mackey BM., J. Microbiol. Methods 65(2), 2005
PMID: 16169621
Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy.
Young JW, Locke JC, Altinok A, Rosenfeld N, Bacarian T, Swain PS, Mjolsness E, Elowitz MB., Nat Protoc 7(1), 2011
PMID: 22179594
Technical bias of microcultivation environments on single-cell physiology.
Dusny C, Grunberger A, Probst C, Wiechert W, Kohlheyer D, Schmid A., Lab Chip 15(8), 2015
PMID: 25710324
Single-cell microfluidics: opportunity for bioprocess development.
Grunberger A, Wiechert W, Kohlheyer D., Curr. Opin. Biotechnol. 29(), 2014
PMID: 24642389
Advances in high-throughput single-cell microtechnologies.
Weaver WM, Tseng P, Kunze A, Masaeli M, Chung AJ, Dudani JS, Kittur H, Kulkarni RP, Di Carlo D., Curr. Opin. Biotechnol. 25(), 2013
PMID: 24484889
Review of methods to probe single cell metabolism and bioenergetics.
Vasdekis AE, Stephanopoulos G., Metab. Eng. 27(), 2014
PMID: 25448400
Robust single-particle tracking in live-cell time-lapse sequences.
Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G., Nat. Methods 5(8), 2008
PMID: 18641657
Observing growth and division of large numbers of individual bacteria by image analysis.
Elfwing A, LeMarc Y, Baranyi J, Ballagi A., Appl. Environ. Microbiol. 70(2), 2004
PMID: 14766541
A chemostat array enables the spatio-temporal analysis of the yeast proteome.
Denervaud N, Becker J, Delgado-Gonzalo R, Damay P, Rajkumar AS, Unser M, Shore D, Naef F, Maerkl SJ., Proc. Natl. Acad. Sci. U.S.A. 110(39), 2013
PMID: 24019481
High-throughput gene expression analysis at the level of single proteins using a microfluidic turbidostat and automated cell tracking.
Ullman G, Wallden M, Marklund EG, Mahmutovic A, Razinkov I, Elf J., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 368(1611), 2012
PMID: 23267179
A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
Grunberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Noack S, Wiechert W, Kohlheyer D., Lab Chip 12(11), 2012
PMID: 22511122
Microfluidic picoliter bioreactor for microbial single-cell analysis: Fabrication, system setup, and operation
Grünberger, J Vis Exp 82(), 2013
Analysis of SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at the single-cell level.
Nanda AM, Heyer A, Kramer C, Grunberger A, Kohlheyer D, Frunzke J., J. Bacteriol. 196(1), 2013
PMID: 24163339
Rapid inoculation of single bacteria into parallel picoliter fermentation chambers
Probst, Anal Methods 7(), 2015
NIH Image to ImageJ: 25 years of image analysis.
Schneider CA, Rasband WS, Eliceiri KW., Nat. Methods 9(7), 2012
PMID: 22930834
Fiji: an open-source platform for biological-image analysis.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A., Nat. Methods 9(7), 2012
PMID: 22743772

AUTHOR UNKNOWN, 0
Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments.
Grunberger A, van Ooyen J, Paczia N, Rohe P, Schiendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 110(1), 2012
PMID: 22890752
Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG.
Binder D, Grunberger A, Loeschcke A, Probst C, Bier C, Pietruszka J, Wiechert W, Kohlheyer D, Jaeger KE, Drepper T., Integr Biol (Camb) 6(8), 2014
PMID: 24894989
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Unthan S, Grunberger A, van Ooyen J, Gatgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 111(2), 2013
PMID: 23996851
Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes.
Probst C, Grunberger A, Wiechert W, Kohlheyer D., J. Microbiol. Methods 95(3), 2013
PMID: 24041615

AUTHOR UNKNOWN, 0
MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria.
Varela C, Rittmann D, Singh A, Krumbach K, Bhatt K, Eggeling L, Besra GS, Bhatt A., Chem. Biol. 19(4), 2012
PMID: 22520756
Monitoring of population dynamics of Corynebacterium glutamicum by multiparameter flow cytometry.
Neumeyer A, Hubschmann T, Muller S, Frunzke J., Microb Biotechnol 6(2), 2012
PMID: 23279937
Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3.
Frunzke J, Bramkamp M, Schweitzer JE, Bott M., J. Bacteriol. 190(14), 2008
PMID: 18487330
DivS, a novel SOS-inducible cell-division suppressor in Corynebacterium glutamicum.
Ogino H, Teramoto H, Inui M, Yukawa H., Mol. Microbiol. 67(3), 2007
PMID: 18086211
Cell division in Escherichia coli cultures monitored at single cell resolution.
Roostalu J, Joers A, Luidalepp H, Kaldalu N, Tenson T., BMC Microbiol. 8(), 2008
PMID: 18430255
Phenotypic bistability in Escherichia coli's central carbon metabolism.
Kotte O, Volkmer B, Radzikowski JL, Heinemann M., Mol. Syst. Biol. 10(), 2014
PMID: 24987115
A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors.
Brognaux A, Han S, Sorensen SJ, Lebeau F, Thonart P, Delvigne F., Microb. Cell Fact. 12(), 2013
PMID: 24176169
Charting microbial phenotypes in multiplex nanoliter batch bioreactors.
Dai J, Yoon SH, Sim HY, Yang YS, Oh TK, Kim JF, Hong JW., Anal. Chem. 85(12), 2013
PMID: 23581968
"Persisters": survival at the cellular level.
Dawson CC, Intapa C, Jabra-Rizk MA., PLoS Pathog. 7(7), 2011
PMID: 21829345
Single cell kinetics of phenotypic switching in the arabinose utilization system of E. coli.
Fritz G, Megerle JA, Westermayer SA, Brick D, Heermann R, Jung K, Radler JO, Gerland U., PLoS ONE 9(2), 2014
PMID: 24586851
Stochastic switching as a survival strategy in fluctuating environments.
Acar M, Mettetal JT, van Oudenaarden A., Nat. Genet. 40(4), 2008
PMID: 18362885
Single-cell dynamics reveals sustained growth during diauxic shifts.
Boulineau S, Tostevin F, Kiviet DJ, ten Wolde PR, Nghe P, Tans SJ., PLoS ONE 8(4), 2013
PMID: 23637881
Improvement in the lag phase estimation of individual cells that have survived mild heat treatment
Aguirre JS, Monis A, Garcia de Fernando GD., International journal of food science and technology. 49(3), 2014
PMID: IND500731996
Quantal microbiology.
Bridson EY, Gould GW., Lett. Appl. Microbiol. 30(2), 2000
PMID: 10736007

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26348020
PubMed | Europe PMC

Suchen in

Google Scholar