Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments

Sachs CC, Grünberger A, Helfrich S, Probst C, Wiechert W, Kohlheyer D, Nöh K (2016)
PLoS one 11(9): e0163453.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.52 MB
Autor*in
Sachs, Christian Carsten; Grünberger, AlexanderUniBi; Helfrich, Stefan; Probst, Christopher; Wiechert, Wolfgang; Kohlheyer, Dietrich; Nöh, Katharina
Abstract / Bemerkung
**Background**

Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM) cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool.
**Results**

We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB) is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware) that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks.
**Conclusion**

Presented is the software molyso, a ready-to-use open source software (BSD-licensed) for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso.
Erscheinungsjahr
2016
Zeitschriftentitel
PLoS one
Band
11
Ausgabe
9
Art.-Nr.
e0163453
ISBN
1932-6203
ISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2912522

Zitieren

Sachs CC, Grünberger A, Helfrich S, et al. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments. PLoS one. 2016;11(9): e0163453.
Sachs, C. C., Grünberger, A., Helfrich, S., Probst, C., Wiechert, W., Kohlheyer, D., & Nöh, K. (2016). Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments. PLoS one, 11(9), e0163453. doi:10.1371/journal.pone.0163453
Sachs, Christian Carsten, Grünberger, Alexander, Helfrich, Stefan, Probst, Christopher, Wiechert, Wolfgang, Kohlheyer, Dietrich, and Nöh, Katharina. 2016. “Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments”. PLoS one 11 (9): e0163453.
Sachs, C. C., Grünberger, A., Helfrich, S., Probst, C., Wiechert, W., Kohlheyer, D., and Nöh, K. (2016). Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments. PLoS one 11:e0163453.
Sachs, C.C., et al., 2016. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments. PLoS one, 11(9): e0163453.
C.C. Sachs, et al., “Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments”, PLoS one, vol. 11, 2016, : e0163453.
Sachs, C.C., Grünberger, A., Helfrich, S., Probst, C., Wiechert, W., Kohlheyer, D., Nöh, K.: Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments. PLoS one. 11, : e0163453 (2016).
Sachs, Christian Carsten, Grünberger, Alexander, Helfrich, Stefan, Probst, Christopher, Wiechert, Wolfgang, Kohlheyer, Dietrich, and Nöh, Katharina. “Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments”. PLoS one 11.9 (2016): e0163453.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:50Z
MD5 Prüfsumme
4ff0696251c4a31d74cb34b8d534a931


6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Live imaging of Aiptasia larvae, a model system for coral and anemone bleaching, using a simple microfluidic device.
Van Treuren W, Brower KK, Labanieh L, Hunt D, Lensch S, Cruz B, Cartwright HN, Tran C, Fordyce PM., Sci Rep 9(1), 2019
PMID: 31239506
Laboratory-scale photobiotechnology-current trends and future perspectives.
Morschett H, Loomba V, Huber G, Wiechert W, von Lieres E, Oldiges M., FEMS Microbiol Lett 365(1), 2018
PMID: 29126108
Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices.
Yang D, Jennings AD, Borrego E, Retterer ST, Männik J., Front Microbiol 9(), 2018
PMID: 29765371
Beyond the bulk: disclosing the life of single microbial cells.
Rosenthal K, Oehling V, Dusny C, Schmid A., FEMS Microbiol Rev 41(6), 2017
PMID: 29029257

37 References

Daten bereitgestellt von Europe PubMed Central.

Recent developments in microfluidic large scale integration.
Araci IE, Brisk P., Curr. Opin. Biotechnol. 25(), 2013
PMID: 24484882
Fluidic and microfluidic tools for quantitative systems biology.
Okumus B, Yildiz S, Toprak E., Curr. Opin. Biotechnol. 25(), 2013
PMID: 24484878
Single-cell analysis in biotechnology, systems biology, and biocatalysis.
Fritzsch FS, Dusny C, Frick O, Schmid A., Annu Rev Chem Biomol Eng 3(), 2012
PMID: 22468600
Microfluidic single cell analysis: from promise to practice.
Lecault V, White AK, Singhal A, Hansen CL., Curr Opin Chem Biol 16(3-4), 2012
PMID: 22525493
Single-cell microfluidics: opportunity for bioprocess development.
Grunberger A, Wiechert W, Kohlheyer D., Curr. Opin. Biotechnol. 29(), 2014
PMID: 24642389
Robust growth of Escherichia coli.
Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S., Curr. Biol. 20(12), 2010
PMID: 20537537
Stochasticity of metabolism and growth at the single-cell level.
Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ., Nature 514(7522), 2014
PMID: 25186725
Bistable expression of virulence genes in salmonella leads to the formation of an antibiotic-tolerant subpopulation.
Arnoldini M, Vizcarra IA, Pena-Miller R, Stocker N, Diard M, Vogel V, Beardmore RE, Hardt WD, Ackermann M., PLoS Biol. 12(8), 2014
PMID: 25136970
Cell-size control and homeostasis in bacteria.
Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M, Jun S., Curr. Biol. 25(3), 2014
PMID: 25544609
Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria.
Moolman MC, Huang Z, Krishnan ST, Kerssemakers JW, Dekker NH., J Nanobiotechnology 11(), 2013
PMID: 23575419
Microfluidic chemostat for measuring single cell dynamics in bacteria.
Long Z, Nugent E, Javer A, Cicuta P, Sclavi B, Cosentino Lagomarsino M, Dorfman KD., Lab Chip 13(5), 2013
PMID: 23334753
CellProfiler: free, versatile software for automated biological image analysis.
Lamprecht MR, Sabatini DM, Carpenter AE., BioTechniques 42(1), 2007
PMID: 17269487
High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics.
Sliusarenko O, Heinritz J, Emonet T, Jacobs-Wagner C., Mol. Microbiol. 80(3), 2011
PMID: 21414037
Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy.
Young JW, Locke JC, Altinok A, Rosenfeld N, Bacarian T, Swain PS, Mjolsness E, Elowitz MB., Nat Protoc 7(1), 2011
PMID: 22179594
TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.
Klein J, Leupold S, Biegler I, Biedendieck R, Munch R, Jahn D., Bioinformatics 28(17), 2012
PMID: 22772947

AUTHOR UNKNOWN, 2014
The measurement of power spectra from the point of view of communications engineering—Part I
AUTHOR UNKNOWN, 1958

AUTHOR UNKNOWN, 0
A threshold selection method from gray-level histograms
AUTHOR UNKNOWN, 1979
Multiassignment for tracking a large number of overlapping objects
AUTHOR UNKNOWN, 1997
Robust single-particle tracking in live-cell time-lapse sequences.
Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G., Nat. Methods 5(8), 2008
PMID: 18641657
Python for scientific computing
AUTHOR UNKNOWN, 2007

AUTHOR UNKNOWN, 0
Metadata matters: access to image data in the real world.
Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, Macdonald D, Tarkowska A, Sticco C, Hill E, Rossner M, Eliceiri KW, Swedlow JR., J. Cell Biol. 189(5), 2010
PMID: 20513764
Matplotlib: A 2D graphics environment
AUTHOR UNKNOWN, 2007
The OpenCV library
AUTHOR UNKNOWN, 2000
Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations.
Helfrich S, Pfeifer E, Kramer C, Sachs CC, Wiechert W, Kohlheyer D, Noh K, Frunzke J., Mol. Microbiol. 98(4), 2015
PMID: 26235130
Rapid inoculation of single bacteria into parallel picoliter fermentation chambers
AUTHOR UNKNOWN, 2015
L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum.
Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ., Appl. Environ. Microbiol. 73(7), 2007
PMID: 17293513
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Unthan S, Grunberger A, van Ooyen J, Gatgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 111(2), 2013
PMID: 23996851
Microfluidic picoliter bioreactor for microbial single-cell analysis: Fabrication, system setup, and operation
AUTHOR UNKNOWN, 2013

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 2008
Vizardous: interactive analysis of microbial populations with single cell resolution.
Helfrich S, Azzouzi CE, Probst C, Seiffarth J, Grunberger A, Wiechert W, Kohlheyer D, Noh K., Bioinformatics 31(23), 2015
PMID: 26261223
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27661996
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche