Physiological roles of sigma factor SigD in Corynebacterium glutamicum

Taniguchi H, Busche T, Patschkowski T, Niehaus K, Patek M, Kalinowski J, Wendisch VF (2017)
BMC Microbiology 17(1): 158.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 1.59 MB
Abstract / Bemerkung
Background Sigma factors are one of the components of RNA polymerase holoenzymes, and an essential factor of transcription initiation in bacteria. Corynebacterium glutamicum possesses seven genes coding for sigma factors, most of which have been studied to some detail; however, the role of SigD in transcriptional regulation in C. glutamicum has been mostly unknown. Results In this work, pleiotropic effects of sigD overexpression at the level of phenotype, transcripts, proteins and metabolites were investigated. Overexpression of sigD decreased the growth rate of C. glutamicum cultures, and induced several physiological effects such as reduced culture foaming, turbid supernatant and cell aggregation. Upon overexpression of sigD, the level of Cmt1 (corynomycolyl transferase) in the supernatant was notably enhanced, and carbohydrate-containing compounds were excreted to the supernatant. The real-time PCR analysis revealed that sigD overexpression increased the expression of genes related to corynomycolic acid synthesis (fadD2, pks), genes encoding corynomycolyl transferases (cop1, cmt1, cmt2, cmt3), L, D-transpeptidase (lppS), a subunit of the major cell wall channel (porH), and the envelope lipid regulation factor (elrF). Furthermore, overexpression of sigD resulted in trehalose dicorynomycolate accumulation in the cell envelope. Conclusions This study demonstrated that SigD regulates the synthesis of corynomycolate and related compounds, and expanded the knowledge of regulatory functions of sigma factors in C. glutamicum.
Corynebacterium glutamicum Sigma factor SigD Mycomembrane Trehalose dicorynomycolate
BMC Microbiology
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Taniguchi H, Busche T, Patschkowski T, et al. Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiology. 2017;17(1): 158.
Taniguchi, H., Busche, T., Patschkowski, T., Niehaus, K., Patek, M., Kalinowski, J., & Wendisch, V. F. (2017). Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiology, 17(1), 158. doi:10.1186/s12866-017-1067-6
Taniguchi, Hironori, Busche, Tobias, Patschkowski, Thomas, Niehaus, Karsten, Patek, Miroslav, Kalinowski, Jörn, and Wendisch, Volker F. 2017. “Physiological roles of sigma factor SigD in Corynebacterium glutamicum”. BMC Microbiology 17 (1): 158.
Taniguchi, H., Busche, T., Patschkowski, T., Niehaus, K., Patek, M., Kalinowski, J., and Wendisch, V. F. (2017). Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiology 17:158.
Taniguchi, H., et al., 2017. Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiology, 17(1): 158.
H. Taniguchi, et al., “Physiological roles of sigma factor SigD in Corynebacterium glutamicum”, BMC Microbiology, vol. 17, 2017, : 158.
Taniguchi, H., Busche, T., Patschkowski, T., Niehaus, K., Patek, M., Kalinowski, J., Wendisch, V.F.: Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiology. 17, : 158 (2017).
Taniguchi, Hironori, Busche, Tobias, Patschkowski, Thomas, Niehaus, Karsten, Patek, Miroslav, Kalinowski, Jörn, and Wendisch, Volker F. “Physiological roles of sigma factor SigD in Corynebacterium glutamicum”. BMC Microbiology 17.1 (2017): 158.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032.
Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M., Front Microbiol 9(), 2018
PMID: 30687273
Deciphering the Adaptation of Corynebacterium glutamicum in Transition from Aerobiosis via Microaerobiosis to Anaerobiosis.
Lange J, Münch E, Müller J, Busche T, Kalinowski J, Takors R, Blombach B., Genes (Basel) 9(6), 2018
PMID: 29899275

58 References

Daten bereitgestellt von Europe PubMed Central.

Bacterial sigma factors: a historical, structural, and genomic perspective.
Feklistov A, Sharon BD, Darst SA, Gross CA., Annu. Rev. Microbiol. 68(), 2014
PMID: 25002089
The sigma factors of Mycobacterium tuberculosis.
Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R., FEMS Microbiol. Rev. 30(6), 2006
PMID: 17064287
The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family.
Staron A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T., Mol. Microbiol. 74(3), 2009
PMID: 19737356
Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis.
Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Hartig E, Harwood CR, Homuth G, Jarmer H, Jules M, Klipp E, Le Chat L, Lecointe F, Lewis P, Liebermeister W, March A, Mars RA, Nannapaneni P, Noone D, Pohl S, Rinn B, Rugheimer F, Sappa PK, Samson F, Schaffer M, Schwikowski B, Steil L, Stulke J, Wiegert T, Devine KM, Wilkinson AJ, van Dijl JM, Hecker M, Volker U, Bessieres P, Noirot P., Science 335(6072), 2012
PMID: 22383849
Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states.
Cho BK, Kim D, Knight EM, Zengler K, Palsson BO., BMC Biol. 12(), 2014
PMID: 24461193

Studies on the amino acid fermentation
Kinoshita S, Udaka S, Shimono M., 1957

Eggeling L, Bott M., 2005
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
Ikeda M, Nakagawa S., Appl. Microbiol. Biotechnol. 62(2-3), 2003
PMID: 12743753
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Corynebacterium diphtheriae and its relatives.
Barksdale L., Bacteriol Rev 34(4), 1970
PMID: 4322195
Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes.
Laneelle MA, Tropis M, Daffe M., Appl. Microbiol. Biotechnol. 97(23), 2013
PMID: 24113823
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586

Sambrook J., 2001
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Improved method for high-efficiency electrotransformation of Escherichia coli with the large BAC plasmids.
Novakova J, Izsakova A, Grivalsky T, Ottmann C, Farkasovsky M., Folia Microbiol. (Praha) 59(1), 2013
PMID: 23846555
In-gel digestion for mass spectrometric characterization of proteins and proteomes.
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M., Nat Protoc 1(6), 2006
PMID: 17406544
Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach.
Musa YR, Basell K, Schatschneider S, Vorholter FJ, Becher D, Niehaus K., J. Biotechnol. 167(2), 2013
PMID: 23792782
Colorimetric method for determination of sugars and related substances
DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F., 1956
Carbohydrate analysis by a phenol-sulfuric acid method in microplate format.
Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC., Anal. Biochem. 339(1), 2005
PMID: 15766712
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
Deciphering the Transcriptional Response Mediated by the Redox-Sensing System HbpS-SenS-SenR from Streptomycetes.
Busche T, Winkler A, Wedderhoff I, Ruckert C, Kalinowski J, Ortiz de Orue Lucana D., PLoS ONE 11(8), 2016
PMID: 27541358
Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming.
Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, Goesmann A., Bioinformatics 27(10), 2011
PMID: 21450712
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
ReadXplorer 2-detailed read mapping analysis and visualization from one single source.
Hilker R, Stadermann KB, Schwengers O, Anisiforov E, Jaenicke S, Weisshaar B, Zimmermann T, Goesmann A., Bioinformatics 32(24), 2016
PMID: 27540267
Differential expression analysis for sequence count data.
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane.
Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffe M., Microbiology (Reading, Engl.) 147(Pt 5), 2001
PMID: 11320139

Nielsen SS., 2010
Elucidation of genes relevant to the microaerobic growth of Corynebacterium glutamicum.
Ikeda M, Baba M, Tsukamoto N, Komatsu T, Mitsuhashi S, Takeno S., Biosci. Biotechnol. Biochem. 73(12), 2009
PMID: 19966452
Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: Application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin
Taniguchi H, Henke NA, Heider SAE, Wendisch VF., 2017
The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis.
Gande R, Dover LG, Krumbach K, Besra GS, Sahm H, Oikawa T, Eggeling L., J. Bacteriol. 189(14), 2007
PMID: 17483212
The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria.
Gavalda S, Bardou F, Laval F, Bon C, Malaga W, Chalut C, Guilhot C, Mourey L, Daffe M, Quemard A., Chem. Biol. 21(12), 2014
PMID: 25467124
A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms.
Portevin D, De Sousa-D'Auria C, Houssin C, Grimaldi C, Chami M, Daffe M, Guilhot C., Proc. Natl. Acad. Sci. U.S.A. 101(1), 2003
PMID: 14695899
The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan.
Lea-Smith DJ, Pyke JS, Tull D, McConville MJ, Coppel RL, Crellin PK., J. Biol. Chem. 282(15), 2007
PMID: 17308303
MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria.
Varela C, Rittmann D, Singh A, Krumbach K, Bhatt K, Eggeling L, Besra GS, Bhatt A., Chem. Biol. 19(4), 2012
PMID: 22520756
Acetylation of trehalose mycolates is required for efficient MmpL-mediated membrane transport in Corynebacterineae.
Yamaryo-Botte Y, Rainczuk AK, Lea-Smith DJ, Brammananth R, van der Peet PL, Meikle P, Ralton JE, Rupasinghe TW, Williams SJ, Coppel RL, Crellin PK, McConville MJ., ACS Chem. Biol. 10(3), 2014
PMID: 25427102
Identification of a mycoloyl transferase selectively involved in O-acylation of polypeptides in Corynebacteriales.
Huc E, de Sousa-D'Auria C, de la Sierra-Gallay IL, Salmeron C, van Tilbeurgh H, Bayan N, Houssin C, Daffe M, Tropis M., J. Bacteriol. 195(18), 2013
PMID: 23852866
Identification of a stress-induced factor of Corynebacterineae that is involved in the regulation of the outer membrane lipid composition.
Meniche X, Labarre C, de Sousa-d'Auria C, Huc E, Laval F, Tropis M, Bayan N, Portevin D, Guilhot C, Daffe M, Houssin C., J. Bacteriol. 191(23), 2009
PMID: 19801408
Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum.
Kacem R, De Sousa-D'Auria C, Tropis M, Chami M, Gounon P, Leblon G, Houssin C, Daffe M., Microbiology (Reading, Engl.) 150(Pt 1), 2004
PMID: 14702399
Identification of a novel bioflocculant from a newly isolated Corynebacterium glutamicum
He N, Li Y, Chen J, Lun S-Y., 2002
Identification of the sugars involved in mycobacterial cell aggregation.
Anton V, Rouge P, Daffe M., FEMS Microbiol. Lett. 144(2-3), 1996
PMID: 8900060
Aggregation-based detection of M. smegmatis using D-arabinose-functionalized fluorescent silica nanoparticles.
Jayawardana KW, Wijesundera SA, Yan M., Chem. Commun. (Camb.) 51(88), 2015
PMID: 26379182
Priming and activation of mouse macrophages by trehalose 6,6'-dicorynomycolate vesicles from Corynebacterium glutamicum.
Chami M, Andreau K, Lemassu A, Petit JF, Houssin C, Puech V, Bayan N, Chaby R, Daffe M., FEMS Immunol. Med. Microbiol. 32(2), 2002
PMID: 11821236
The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae.
Gebhardt H, Meniche X, Tropis M, Kramer R, Daffe M, Morbach S., Microbiology (Reading, Engl.) 153(Pt 5), 2007
PMID: 17464056

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 28701150
PubMed | Europe PMC

Suchen in

Google Scholar