A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate

Foley SW, Gosai SJ, Wang D, Selamoglu N, Sollitti AC, Köster T, Steffen A, Lyons E, Daldal F, Garcia BA, Staiger D, et al. (2017)
Developmental Cell 41(2): 204-220.e5.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Foley, Shawn W.; Gosai, Sager J.; Wang, Dongxue; Selamoglu, Nur; Sollitti, Amelia C.; Köster, TinoUniBi ; Steffen, AlexanderUniBi; Lyons, Eric; Daldal, Fevzi; Garcia, Benjamin A.; Staiger, DorotheeUniBi; Deal, Roger B.
Alle
Abstract / Bemerkung
The Arabidopsis thaliana root epidermis is comprised of two cell types, hair and nonhair cells, which differentiate from the same precursor. Although the transcriptional programs regulating these events are well studied, post-transcriptional factors functioning in this cell fate decision are mostly unknown. Here, we globally identify RNA-protein interactions and RNA secondary structure in hair and nonhair cell nuclei. This analysis reveals distinct structural and protein binding patterns across both transcriptomes, allowing identification of differential RNA binding protein (RBP) recognition sites. Using these sequences, we identify two RBPs that regulate hair cell development.Specifically, we find that SERRATE functions in a microRNA-dependent manner to inhibit hair cellfate, while also terminating growth of root hairs mostly independent of microRNA biogenesis. In addition, we show that GLYCINE-RICH PROTEIN 8 promotes hair cell fate while alleviating phosphate starvation stress. In total, this global analysis revealspost-transcriptional regulators of plant root epidermal cell fate. Copyright 2017 Elsevier Inc. All rights reserved.
Stichworte
RNA binding proteins; RNA biology; RNA secondary structure; phosphate starvation response; plant development; post-transcriptional regulation; root hairs
Erscheinungsjahr
2017
Zeitschriftentitel
Developmental Cell
Band
41
Ausgabe
2
Seite(n)
204-220.e5
ISSN
1878-1551
eISSN
1534-5807
Page URI
https://pub.uni-bielefeld.de/record/2911046

Zitieren

Foley SW, Gosai SJ, Wang D, et al. A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate. Developmental Cell. 2017;41(2):204-220.e5.
Foley, S. W., Gosai, S. J., Wang, D., Selamoglu, N., Sollitti, A. C., Köster, T., Steffen, A., et al. (2017). A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate. Developmental Cell, 41(2), 204-220.e5. doi:10.1016/j.devcel.2017.03.018
Foley, Shawn W., Gosai, Sager J., Wang, Dongxue, Selamoglu, Nur, Sollitti, Amelia C., Köster, Tino, Steffen, Alexander, et al. 2017. “A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate”. Developmental Cell 41 (2): 204-220.e5.
Foley, S. W., Gosai, S. J., Wang, D., Selamoglu, N., Sollitti, A. C., Köster, T., Steffen, A., Lyons, E., Daldal, F., Garcia, B. A., et al. (2017). A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate. Developmental Cell 41, 204-220.e5.
Foley, S.W., et al., 2017. A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate. Developmental Cell, 41(2), p 204-220.e5.
S.W. Foley, et al., “A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate”, Developmental Cell, vol. 41, 2017, pp. 204-220.e5.
Foley, S.W., Gosai, S.J., Wang, D., Selamoglu, N., Sollitti, A.C., Köster, T., Steffen, A., Lyons, E., Daldal, F., Garcia, B.A., Staiger, D., Deal, R.B., Gregory, B.D.: A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate. Developmental Cell. 41, 204-220.e5 (2017).
Foley, Shawn W., Gosai, Sager J., Wang, Dongxue, Selamoglu, Nur, Sollitti, Amelia C., Köster, Tino, Steffen, Alexander, Lyons, Eric, Daldal, Fevzi, Garcia, Benjamin A., Staiger, Dorothee, Deal, Roger B., and Gregory, Brian D. “A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate”. Developmental Cell 41.2 (2017): 204-220.e5.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Editorial: Plant RNA Biology.
Szakonyi D, Confraria A, Valerio C, Duque P, Staiger D., Front Plant Sci 10(), 2019
PMID: 31338103
Nuclear Transcriptomes at High Resolution Using Retooled INTACT.
Reynoso MA, Pauluzzi GC, Kajala K, Cabanlit S, Velasco J, Bazin J, Deal R, Sinha NR, Brady SM, Bailey-Serres J., Plant Physiol 176(1), 2018
PMID: 28956755
Recent Trends in Plant Protein Complex Analysis in a Developmental Context.
Bontinck M, Van Leene J, Gadeyne A, De Rybel B, Eeckhout D, Nelissen H, De Jaeger G., Front Plant Sci 9(), 2018
PMID: 29868093
New Era of Studying RNA Secondary Structure and Its Influence on Gene Regulation in Plants.
Yang X, Yang M, Deng H, Ding Y., Front Plant Sci 9(), 2018
PMID: 29872445
Analyses of mRNA structure dynamics identify embryonic gene regulatory programs.
Beaudoin JD, Novoa EM, Vejnar CE, Yartseva V, Takacs CM, Kellis M, Giraldez AJ., Nat Struct Mol Biol 25(8), 2018
PMID: 30061596
Does RNA secondary structure drive translation or vice versa?
Kramer MC, Gregory BD., Nat Struct Mol Biol 25(8), 2018
PMID: 30061597
Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes.
Speth C, Szabo EX, Martinho C, Collani S, Zur Oven-Krockhaus S, Richter S, Droste-Borel I, Macek B, Stierhof YD, Schmid M, Liu C, Laubinger S., Elife 7(), 2018
PMID: 30152752
RNA structure, binding, and coordination in Arabidopsis.
Foley SW, Kramer MC, Gregory BD., Wiley Interdiscip Rev RNA 8(5), 2017
PMID: 28660659
Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., Genome Biol 18(1), 2017
PMID: 29084609
Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo.
Palovaara J, Saiga S, Wendrich JR, van 't Wout Hofland N, van Schayck JP, Hater F, Mutte S, Sjollema J, Boekschoten M, Hooiveld GJ, Weijers D., Nat Plants 3(11), 2017
PMID: 29116234

49 References

Daten bereitgestellt von Europe PubMed Central.

MEME SUITE: tools for motif discovery and searching.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS., Nucleic Acids Res. 37(Web Server issue), 2009
PMID: 19458158
Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability
Bates TR, Lynch JP., 1996
A comprehensive database of high-throughput sequencing-based RNA secondary structure probing data (Structure Surfer).
Berkowitz ND, Silverman IM, Childress DM, Kazan H, Wang LS, Gregory BD., BMC Bioinformatics 17(1), 2016
PMID: 27188311
The SERRATE locus controls the formation of the early juvenile leaves and phase length in Arabidopsis
Clarke JH, Tack D, Findlay K, Van M, Van M., 1999
The dynamic landscapes of RNA architecture.
Cruz JA, Westhof E., Cell 136(4), 2009
PMID: 19239882
In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.
Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM., Nature 505(7485), 2013
PMID: 24270811
Cellular organisation of the Arabidopsis thaliana root.
Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B., Development 119(1), 1993
PMID: 8275865
The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1.
Dong Z, Han MH, Fedoroff N., Proc. Natl. Acad. Sci. U.S.A. 105(29), 2008
PMID: 18632569
The CKH2/PKL Chromatin Remodeling Factor Negatively Regulates Cytokinin Responses in Arabidopsis Calli
Furuta K, Kubo M, Sano K, Demura T, Fukuda H, Liu YG, Shibata D, Kakimoto T., 2011
Acid phosphatase activity in phosphorus-deficient white lupin roots
Gilbert GA, Knight JD, Vance CP, Allan DL., 1999
Global analysis of the RNA-protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus.
Gosai SJ, Foley SW, Wang D, Silverman IM, Selamoglu N, Nelson AD, Beilstein MA, Daldal F, Deal RB, Gregory BD., Mol. Cell 57(2), 2014
PMID: 25557549
Root Hairs
Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J., 2014
MBNL proteins repress ES-cell-specific alternative splicing and reprogramming.
Han H, Irimia M, Ross PJ, Sung HK, Alipanahi B, David L, Golipour A, Gabut M, Michael IP, Nachman EN, Wang E, Trcka D, Thompson T, O'Hanlon D, Slobodeniuc V, Barbosa-Morais NL, Burge CB, Moffat J, Frey BJ, Nagy A, Ellis J, Wrana JL, Blencowe BJ., Nature 498(7453), 2013
PMID: 23739326
Building robust transcriptomes with master splicing factors.
Jangi M, Sharp PA., Cell 159(3), 2014
PMID: 25417102
Mapping gene activity of Arabidopsis root hairs.
Lan P, Li W, Lin WD, Santi S, Schmidt W., Genome Biol. 14(6), 2013
PMID: 23800126
Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR.
Lebedeva S, Jens M, Theil K, Schwanhausser B, Selbach M, Landthaler M, Rajewsky N., Mol. Cell 43(3), 2011
PMID: 21723171
Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome.
Li F, Zheng Q, Vandivier LE, Willmann MR, Chen Y, Gregory BD., Plant Cell 24(11), 2012
PMID: 23150631
Global analysis of RNA secondary structure in two metazoans.
Li F, Zheng Q, Ryvkin P, Dragomir I, Desai Y, Aiyer S, Valladares O, Yang J, Bambina S, Sabin LR, Murray JI, Lamitina T, Raj A, Cherry S, Wang LS, Gregory BD., Cell Rep 1(1), 2012
PMID: 22832108
Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis.
Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH., Plant Cell 24(11), 2012
PMID: 23136377
Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4.
Mei H, Cheng NH, Zhao J, Park S, Escareno RA, Pittman JK, Hirschi KD., New Phytol. 183(1), 2009
PMID: 19368667
Root Hair Occurrence anld Variation with Environment
Meisner CA, Karnok KJ., 1991
Phosphate transporters from the higher plant Arabidopsis thaliana.
Muchhal US, Pardo JM, Raghothama KG., Proc. Natl. Acad. Sci. U.S.A. 93(19), 1996
PMID: 8927627
Responses of root architecture development to low phosphorus availability: a review.
Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS., Ann. Bot. 112(2), 2012
PMID: 23267006

AUTHOR UNKNOWN, 2012
PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis.
Ogas J, Kaufmann S, Henderson J, Somerville C., Proc. Natl. Acad. Sci. U.S.A. 96(24), 1999
PMID: 10570159
Root developmental adaptation to phosphate starvation: better safe than sorry.
Peret B, Clement M, Nussaume L, Desnos T., Trends Plant Sci. 16(8), 2011
PMID: 21684794
The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana.
Raczynska KD, Stepien A, Kierzkowski D, Kalak M, Bajczyk M, McNicol J, Simpson CG, Szweykowska-Kulinska Z, Brown JW, Jarmolowski A., Nucleic Acids Res. 42(2), 2013
PMID: 24137006
The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis
Ryu KH, Kang YH, Park Y, Hwang I, Schiefelbein J, Lee MM., 2005
Genetic analysis of leaf form mutants from the Arabidopsis Information Service collection.
Serrano-Cartagena J, Robles P, Ponce MR, Micol JL., Mol. Gen. Genet. 261(4-5), 1999
PMID: 10394910
RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome.
Silverman IM, Li F, Alexander A, Goff L, Trapnell C, Rinn JL, Gregory BD., Genome Biol. 15(1), 2014
PMID: 24393486
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Koster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res. 40(22), 2012
PMID: 23042250
The Conservation and Function of RNA Secondary Structure in Plants.
Vandivier LE, Anderson SJ, Foley SW, Gregory BD., Annu Rev Plant Biol 67(), 2016
PMID: 26865341
Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC.
Wada T, Tachibana T, Shimura Y, Okada K., Science 277(5329), 1997
PMID: 9262483
Epigenome profiling of specific plant cell types using a streamlined INTACT protocol and ChIP-seq
Wang D, Deal RB., 2015
Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation.
Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH, Chen YF., Plant Physiol. 164(4), 2014
PMID: 24586044
ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing.
Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP., Mol. Cell 33(5), 2009
PMID: 19285943
MOR1 is essential for organizing cortical microtubules in plants.
Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO., Nature 411(6837), 2001
PMID: 11385579
Phosphate availability regulates root system architecture in Arabidopsis.
Williamson LC, Ribrioux SP, Fitter AH, Leyser HM., Plant Physiol. 126(2), 2001
PMID: 11402214
The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation.
Woo J, MacPherson CR, Liu J, Wang H, Kiba T, Hannah MA, Wang XJ, Bajic VB, Chua NH., BMC Plant Biol. 12(), 2012
PMID: 22553952
SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis
Yang L, Liu Z, Lu F, Dong A, Huang H., 2006
Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA.
Younis I, Dittmar K, Wang W, Foley SW, Berg MG, Hu KY, Wei Z, Wan L, Dreyfuss G., Elife 2(), 2013
PMID: 23908766
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28441533
PubMed | Europe PMC

Suchen in

Google Scholar