Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models
Fuchs P, Nussbeck FW, Meuwly N, Bodenmann G (2017)
Frontiers in Psychology 8: 429.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
fpsyg-08-00429.fuchs.pdf
1.87 MB
Autor*in
Einrichtung
Abstract / Bemerkung
The analysis of observational data is often seen as a key approach to understanding dynamics in romantic relationships but also in dyadic systems in general. Statistical models for the analysis of dyadic observational data are not commonly known or applied. In this contribution, selected approaches to dyadic sequence data will be presented with a focus on models that can be applied when sample sizes are of medium size (N = 100 couples or less). Each of the statistical models is motivated by an underlying potential research question, the most important model results are presented and linked to the research question. The following research questions and models are compared with respect to their applicability using a hands on approach: (I) Is there an association between a particular behavior by one and the reaction by the other partner? (Pearson Correlation); (II) Does the behavior of one member trigger an immediate reaction by the other? (aggregated logit models; multi-level approach; basic Markov model); (III) Is there an underlying dyadic process, which might account for the observed behavior? (hidden Markov model); and (IV) Are there latent groups of dyads, which might account for observing different reaction patterns? (mixture Markov; optimal matching). Finally, recommendations for researchers to choose among the different models, issues of data handling, and advises to apply the statistical models in empirical research properly are given (e.g., in a new r-package “DySeq”).
Erscheinungsjahr
2017
Zeitschriftentitel
Frontiers in Psychology
Band
8
Art.-Nr.
429
ISSN
1664-1078
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2910257
Zitieren
Fuchs P, Nussbeck FW, Meuwly N, Bodenmann G. Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models. Frontiers in Psychology. 2017;8: 429.
Fuchs, P., Nussbeck, F. W., Meuwly, N., & Bodenmann, G. (2017). Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models. Frontiers in Psychology, 8, 429. doi:10.3389/fpsyg.2017.00429
Fuchs, Peter, Nussbeck, Fridtjof W., Meuwly, Nathalie, and Bodenmann, Guy. 2017. “Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models”. Frontiers in Psychology 8: 429.
Fuchs, P., Nussbeck, F. W., Meuwly, N., and Bodenmann, G. (2017). Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models. Frontiers in Psychology 8:429.
Fuchs, P., et al., 2017. Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models. Frontiers in Psychology, 8: 429.
P. Fuchs, et al., “Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models”, Frontiers in Psychology, vol. 8, 2017, : 429.
Fuchs, P., Nussbeck, F.W., Meuwly, N., Bodenmann, G.: Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models. Frontiers in Psychology. 8, : 429 (2017).
Fuchs, Peter, Nussbeck, Fridtjof W., Meuwly, Nathalie, and Bodenmann, Guy. “Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models”. Frontiers in Psychology 8 (2017): 429.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
fpsyg-08-00429.fuchs.pdf
1.87 MB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:47Z
MD5 Prüfsumme
db709e1d37d3efcbaf20a637b03a777c
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
51 References
Daten bereitgestellt von Europe PubMed Central.
Strings of adulthood: a sequence analysis of young british women's work-family trajectories
Aassve A., Billari F., Piccarreta R.., 2007
Aassve A., Billari F., Piccarreta R.., 2007
Sequence analysis: new methods for old ideas
Abbott A.., 1995
Abbott A.., 1995
Sequence analysis and optimal matching methods in sociology review and prospect
Abbott A., Tsay A.., 2000
Abbott A., Tsay A.., 2000
Multilevel mixture models
Asparouhov T., Muthen B.., 2008
Asparouhov T., Muthen B.., 2008
Bakeman R., Gottman J.., 1997
LMest: an R package for latent Markov models for categorical longitudinal data
Bartolucci F., Farcomeni A., Pandolfi S., Pennoni F.., 2015
Bartolucci F., Farcomeni A., Pandolfi S., Pennoni F.., 2015
Fitting linear mixed-effects models using lme4
Bates D., Mächler M., Bolker B., Walker S.., 2015
Bates D., Mächler M., Bolker B., Walker S.., 2015
Career patterns of executive women in finance: an optimal matching analysis 1
Blair-Loy M.., 1999
Blair-Loy M.., 1999
Bodenmann G.., 1995
Effects of Stress on the Social Support Provided by Men and Women in Intimate Relationships.
Bodenmann G, Meuwly N, Germann J, Nussbeck FW, Heinrichs M, Bradbury TN., Psychol Sci 26(10), 2015
PMID: 26341561
Bodenmann G, Meuwly N, Germann J, Nussbeck FW, Heinrichs M, Bradbury TN., Psychol Sci 26(10), 2015
PMID: 26341561
An introduction to Markov modelling for economic evaluation.
Briggs A, Sculpher M., Pharmacoeconomics 13(4), 1998
PMID: 10178664
Briggs A, Sculpher M., Pharmacoeconomics 13(4), 1998
PMID: 10178664
Latent class models for stage-sequential dynamic latent variables
Collins L., Wugalter S.., 1992
Collins L., Wugalter S.., 1992
The actor–partner interdependence model: a model of bidirectional effects in developmental studies
Cook W., Kenny D.., 2005
Cook W., Kenny D.., 2005
Effect Size, Statistical Power and Sample Size Requirements for the Bootstrap Likelihood Ratio Test in Latent Class Analysis.
Dziak JJ, Lanza ST, Tan X., Struct Equ Modeling 21(4), 2014
PMID: 25328371
Dziak JJ, Lanza ST, Tan X., Struct Equ Modeling 21(4), 2014
PMID: 25328371
Introduction: the need for multimethod measurement in psychology
Eid M., Diener E.., 2006
Eid M., Diener E.., 2006
Everitt B.., 1992
G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences.
Faul F, Erdfelder E, Lang AG, Buchner A., Behav Res Methods 39(2), 2007
PMID: 17695343
Faul F, Erdfelder E, Lang AG, Buchner A., Behav Res Methods 39(2), 2007
PMID: 17695343
Field A.., 2013
Gabadinho A., Ritschard G., Studer M., Müller N.., 2009
How much does it cost? Optimization of costs in sequence analysis of social science data
Gauthier J., Widmer E., Bucher P., Notredame C.., 2009
Gauthier J., Widmer E., Bucher P., Notredame C.., 2009
AUTHOR UNKNOWN, 2002
Helske S., Helske J.., 2016
Henning C.., 2015
A simplified Monte Carlo significance test procedure
Hope A.., 1968
Hope A.., 1968
Hox J., Moerbeek M., van R.., 2010
Kaufman L., Rousseeuw P.., 1990
Kaufman L., Rousseeuw P.., 2009
Models of non-independence in dyadic research
Kenny D.., 1996
Kenny D.., 1996
Kenny D., Kashy D., Cook W.., 2006
The 'Trier Social Stress Test'--a tool for investigating psychobiological stress responses in a laboratory setting.
Kirschbaum C, Pirke KM, Hellhammer DH., Neuropsychobiology 28(1-2), 1993
PMID: 8255414
Kirschbaum C, Pirke KM, Hellhammer DH., Neuropsychobiology 28(1-2), 1993
PMID: 8255414
Analyzing change at the dyadic level: the common fate growth model.
Ledermann T, Macho S., J Fam Psychol 28(2), 2014
PMID: 24611693
Ledermann T, Macho S., J Fam Psychol 28(2), 2014
PMID: 24611693
Levenshtein V.., 1966
Global self-assessment
Lucas R., Baird B.., 2006
Lucas R., Baird B.., 2006
Sufficient sample sizes for multilevel modeling
Maas C., Hox J.., 2005
Maas C., Hox J.., 2005
Maechler M., Rousseeuw P., Struyf A., Hubert M., Hornik K.., 2015
A multivariate hierarchical model for studying psychological change within married couples
Raudenbush S., Brennan R., Barnett R.., 1995
Raudenbush S., Brennan R., Barnett R.., 1995
Ross S.., 2014
Missing data: our view of the state of the art.
Schafer JL, Graham JW., Psychol Methods 7(2), 2002
PMID: 12090408
Schafer JL, Graham JW., Psychol Methods 7(2), 2002
PMID: 12090408
Estimating the dimension of a model
Schwarz G.., 1978
Schwarz G.., 1978
A mathematical theory of communication
Shannon C.., 2001
Shannon C.., 2001
Clustering in an object-oriented environment
Struyf A., Hubert M., Rousseeuw P.., 1997
Struyf A., Hubert M., Rousseeuw P.., 1997
Mixed Markov latent class models
Van F., Langeheine R.., 1990
Van F., Langeheine R.., 1990
Venables W., Ripley B.., 2002
Vermunt J.., 1993
depmixS4: an R-package for hidden Markov models
Visser I., Speekenbrink M.., 2010
Visser I., Speekenbrink M.., 2010
Hierarchical grouping to optimize an objective function
Ward J.., 1963
Ward J.., 1963
Warnes G., Bolker B., Lumley T., Johnson R.., 2015
Recent trends in hierarchic document clustering: a critical review
Willett P.., 1988
Willett P.., 1988
The changing careers of patients with chronic mental illness: a study of sequential patterns in mental health service utilization.
Wuerker AK., J Ment Health Adm 23(4), 1996
PMID: 8965058
Wuerker AK., J Ment Health Adm 23(4), 1996
PMID: 8965058
Hidden semi-Markov models
Yu S.., 2010
Yu S.., 2010
Zucchini W., MacDonald I.., 2009
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 28443037
PubMed | Europe PMC
Suchen in