Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet

Hossain MS, El Sayed AI, Moore M, Dietz K-J (2017)
Journal of Experimental Botany 68(5): 1283-1298.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Hossain, M. Sazzad; El Sayed, Abdelaleim Ismail; Moore, Maarten; Dietz, Karl-JosefUniBi
Abstract / Bemerkung
Fine-tuned and coordinated regulation of transport, metabolism and redox homeostasis allows plants to acclimate to osmotic and ionic stress caused by high salinity. Sugar beet is a highly salt tolerant crop plant and is therefore an interesting model to study sodium chloride (NaCl) acclimation in crops. Sugar beet plants were subjected to a final level of 300 mM NaCl for up to 14 d in hydroponics. Plants acclimated to NaCl stress by maintaining its growth rate and adjusting its cellular redox and reactive oxygen species (ROS) network. In order to understand the unusual suppression of ROS accumulation under severe salinity, the regulation of elements of the redox and ROS network was investigated at the transcript level. First, the gene families of superoxide dismutase (SOD), peroxiredoxins (Prx), alternative oxidase (AOX), plastid terminal oxidase (PTOX) and NADPH oxidase (RBOH) were identified in the sugar beet genome. Salinity induced the accumulation of Cu-Zn-SOD, Mn-SOD, Fe-SOD3, all AOX isoforms, 2-Cys-PrxB, PrxQ, and PrxIIF. In contrast, Fe-SOD1, 1-Cys-Prx, PrxIIB and PrxIIE levels decreased in response to salinity. Most importantly, RBOH transcripts of all isoforms decreased. This pattern offers a straightforward explanation for the low ROS levels under salinity. Promoters of stress responsive antioxidant genes were analyzed in silico for the enrichment of cis-elements, in order to gain insights into gene regulation. The results indicate that special cis-elements in the promoters of the antioxidant genes in sugar beet participate in adjusting the redox and ROS network and are fundamental to high salinity tolerance of sugar beet. The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Journal of Experimental Botany
1283 - 1298
Page URI


Hossain MS, El Sayed AI, Moore M, Dietz K-J. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. Journal of Experimental Botany. 2017;68(5):1283-1298.
Hossain, M. S., El Sayed, A. I., Moore, M., & Dietz, K. - J. (2017). Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. Journal of Experimental Botany, 68(5), 1283-1298. doi:10.1093/jxb/erx019
Hossain, M. Sazzad, El Sayed, Abdelaleim Ismail, Moore, Maarten, and Dietz, Karl-Josef. 2017. “Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet”. Journal of Experimental Botany 68 (5): 1283-1298.
Hossain, M. S., El Sayed, A. I., Moore, M., and Dietz, K. - J. (2017). Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. Journal of Experimental Botany 68, 1283-1298.
Hossain, M.S., et al., 2017. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. Journal of Experimental Botany, 68(5), p 1283-1298.
M.S. Hossain, et al., “Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet”, Journal of Experimental Botany, vol. 68, 2017, pp. 1283-1298.
Hossain, M.S., El Sayed, A.I., Moore, M., Dietz, K.-J.: Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. Journal of Experimental Botany. 68, 1283-1298 (2017).
Hossain, M. Sazzad, El Sayed, Abdelaleim Ismail, Moore, Maarten, and Dietz, Karl-Josef. “Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet”. Journal of Experimental Botany 68.5 (2017): 1283-1298.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Salinity and crop yield.
Zörb C, Geilfus CM, Dietz KJ., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 30059606
Responses of Tomato Plants under Saline Stress to Foliar Application of Copper Nanoparticles.
Pérez-Labrada F, López-Vargas ER, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A., Plants (Basel) 8(6), 2019
PMID: 31167436
Peroxiredoxins and Redox Signaling in Plants.
Liebthal M, Maynard D, Dietz KJ., Antioxid Redox Signal 28(7), 2018
PMID: 28594234
Effects of Disruption of PMC1 in the tfp1∆/∆ Mutant on Calcium Homeostasis, Oxidative and Osmotic Stress Resistance in Candida albicans.
Jia C, Zhang K, Zhang D, Yu Q, Xiao C, Dong Y, Chu M, Zou S, Li M., Mycopathologia 183(2), 2018
PMID: 29086141
Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity.
Farhangi-Abriz S, Torabian S., Protoplasma 255(3), 2018
PMID: 29330582
Implications of PI3K/AKT/PTEN Signaling on Superoxide Dismutases Expression and in the Pathogenesis of Alzheimer's Disease.
Matsuda S, Nakagawa Y, Tsuji A, Kitagishi Y, Nakanishi A, Murai T., Diseases 6(2), 2018
PMID: 29677102
Role of plant respiratory burst oxidase homologs in stress responses.
Wang W, Chen D, Zhang X, Liu D, Cheng Y, Shen F., Free Radic Res 52(8), 2018
PMID: 29732902
Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation.
Dreyer A, Dietz KJ., Antioxidants (Basel) 7(11), 2018
PMID: 30469375
Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet.
Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz KJ., J Exp Bot 68(21-22), 2017
PMID: 29140437

89 References

Daten bereitgestellt von Europe PubMed Central.

High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs.
AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W., Front Plant Sci 7(), 2016
PMID: 27014300
Role of superoxide dismutases (SODs) in controlling oxidative stress in plants.
Alscher RG, Erturk N, Heath LS., J. Exp. Bot. 53(372), 2002
PMID: 11997379
NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana.
Ben Rejeb K, Benzarti M, Debez A, Bailly C, Savoure A, Abdelly C., J. Plant Physiol. 174(), 2014
PMID: 25462961
Regulation of abscisic acid-induced transcription.
Busk PK, Pages M., Plant Mol. Biol. 37(3), 1998
PMID: 9617810
Reactive oxygen species signaling in plants under abiotic stress.
Choudhury S, Panda P, Sahoo L, Panda SK., Plant Signal Behav 8(4), 2013
PMID: 23425848
Molecular distinction between alternative oxidase from monocots and dicots.
Considine MJ, Holtzapffel RC, Day DA, Whelan J, Millar AH., Plant Physiol. 129(3), 2002
PMID: 12114550
PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants
AUTHOR UNKNOWN, Nucleic Acids Research 44(), 2015
Antioxidant defenses under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought
AUTHOR UNKNOWN, Plant and Cell Physiology 34(), 1993
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast.
Dietz KJ, Turkan I, Krieger-Liszkay A., Plant Physiol. 171(3), 2016
PMID: 27255485
The genome of the recently domesticated crop plant sugar beet (Beta vulgaris).
Dohm JC, Minoche AE, Holtgrawe D, Capella-Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldon T, Lehrach H, Weisshaar B, Himmelbauer H., Nature 505(7484), 2013
PMID: 24352233
A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity.
Ellouzi H, Ben Hamed K, Hernandez I, Cela J, Muller M, Magne C, Abdelly C, Munne-Bosch S., Planta 240(6), 2014
PMID: 25156490
Mechanisms of oxygen activation in different compartments of plant cells
The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.
Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ., J. Biol. Chem. 280(13), 2005
PMID: 15632145
Photorespiratory metabolism: genes, mutants, energetics, and redox signaling.
Foyer CH, Bloom AJ, Queval G, Noctor G., Annu Rev Plant Biol 60(), 2009
PMID: 19575589
Protection against oxygen radicals: an important defence mechanism studied in transgenic plants
AUTHOR UNKNOWN, Plant, Cell and Environment 17(), 1994
Effects of salinity stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars
AUTHOR UNKNOWN, Environmental and Experimental Botany 47(), 2002
Salt tolerance of Beta macrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content.
Hamouda I, Badri M, Mejri M, Cruz C, Siddique KH, Hessini K., Plant Biol (Stuttg) 18(3), 2015
PMID: 26588061
Salinity stress-induced expression of rice AOX1a is mediated through an accumulation of hydrogen peroxide
AUTHOR UNKNOWN, Biologia 65(), 2010
The expression of a peroxiredoxin antioxidant gene, AtPer1, in Arabidopsis thaliana is seed-specific and related to dormancy.
Haslekas C, Stacy RA, Nygaard V, Culianez-Macia FA, Aalen RB., Plant Mol. Biol. 36(6), 1998
PMID: 9580097
Sodium transporters in plants. Diverse genes and physiological functions.
Horie T, Schroeder JI., Plant Physiol. 136(1), 2004
PMID: 15375202
Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins
AUTHOR UNKNOWN, Plant Physiology and Biochemistry 40(), 2002
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
Recent advances in salinity stress biology a review
AUTHOR UNKNOWN, Biotechnology and Molecular Biology Reviews 3(), 2008
Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana.
Ivanov AG, Rosso D, Savitch LV, Stachula P, Rosembert M, Oquist G, Hurry V, Huner NP., Photosyn. Res. 113(1-3), 2012
PMID: 22843101
Dissecting the genetic control of natural variation in salt tolerance of Arabidopsis thaliana accessions.
Katori T, Ikeda A, Iuchi S, Kobayashi M, Shinozaki K, Maehashi K, Sakata Y, Tanaka S, Taji T., J. Exp. Bot. 61(4), 2010
PMID: 20080827
Measurement of NADPH oxidase activity in plants
AUTHOR UNKNOWN, Bio-Protocol 2(), 2012
A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs.
Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C., Plant Cell 10(2), 1998
PMID: 9490748
Crystal structures of a poplar thioredoxin peroxidase that exhibits the structure of glutathione peroxidases: insights into redox-driven conformational changes.
Koh CS, Didierjean C, Navrot N, Panjikar S, Mulliert G, Rouhier N, Jacquot JP, Aubry A, Shawkataly O, Corbier C., J. Mol. Biol. 370(3), 2007
PMID: 17531267
The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux.
Konig J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, Dietz KJ., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11929977
Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets.
Konig J, Muthuramalingam M, Dietz KJ., Curr. Opin. Plant Biol. 15(3), 2012
PMID: 22226570
Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.)
AUTHOR UNKNOWN, Journal of Plant Biology 57(), 2014
Clustal W and Clustal X version 2.0.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG., Bioinformatics 23(21), 2007
PMID: 17846036
Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression.
Li L, Yu X, Thompson A, Guo M, Yoshida S, Asami T, Chory J, Yin Y., Plant J. 58(2), 2008
PMID: 19170933
Direct prediction of bioethanol yield in sugar beet pulp using near infrared spectroscopy.
Magana C, Nunez-Sanchez N, Fernandez-Cabanas VM, Garcia P, Serrano A, Perez-Marin D, Peman JM, Alcalde E., Bioresour. Technol. 102(20), 2011
PMID: 21872469

The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells.
Maxwell DP, Wang Y, McIntosh L., Proc. Natl. Acad. Sci. U.S.A. 96(14), 1999
PMID: 10393984
Reactive oxygen species homeostasis and signalling during drought and salinity stresses.
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R., Plant Cell Environ. 33(4), 2009
PMID: 19712065
Ascorbate peroxidase
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Mechanisms of salinity tolerance.
Munns R, Tester M., Annu Rev Plant Biol 59(), 2008
PMID: 18444910
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses.
Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N., Plant Physiol. 142(4), 2006
PMID: 17071643
The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology.
Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Wollman FA., Annu Rev Plant Biol 66(), 2015
PMID: 25580838
Redox regulation and overreduction control in the photosynthesizing cell: complexity in redox regulatory networks.
Oelze ML, Kandlbinder A, Dietz KJ., Biochim. Biophys. Acta 1780(11), 2008
PMID: 18439433
An improved chemiluminescence method for hydrogen peroxide determination in plant tissues
AUTHOR UNKNOWN, Plant Growth Regulation 48(), 2006
Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes.
Rouhier N, Jacquot JP., Photosyn. Res. 74(3), 2002
PMID: 16245137
Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data.
Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF., Nucleic Acids Res. 37(6), 2009
PMID: 19237396
Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration
AUTHOR UNKNOWN, Plant Science 163(), 2002
A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance.
Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S., Plant J. 45(2), 2006
PMID: 16367967
Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana
Smith CA, Melino VJ, Sweetman C, Soole KL., Physiol Plant 137(4), 2009
PMID: IND44289299
Antioxidant defense in the leaves of C3 and C4 plants under salinity stress
AUTHOR UNKNOWN, Physiologia Plantarum 125(), 2005
Lipid peroxidation associated with accelerated aging of soybean axes.
Stewart RR, Bewley JD., Plant Physiol. 65(2), 1980
PMID: 16661168
Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana.
Stroher E, Wang XJ, Roloff N, Klein P, Husemann A, Dietz KJ., Mol Plant 2(2), 2008
PMID: 19825620
Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray.
Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K., Plant Physiol. 135(3), 2004
PMID: 15247402
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353
Effect of salinity stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant
AUTHOR UNKNOWN, African Journal of Agricultural Research 4(), 2009
Elicitation of defense response in bean leaves by Botrytis cinerea polygalacturonase
AUTHOR UNKNOWN, Acta Physiologiae Plantarum 13(), 1991
Water stress in Beta vulgaris: osmotic adjustment response and gene expression analysis in ssp. vulgaris and maritima
AUTHOR UNKNOWN, American Journal of Plant Sciences 4(), 2013
Regulation of gene expression by photosynthetic signals triggered through modified CO2 availability.
Wormuth D, Baier M, Kandlbinder A, Scheibe R, Hartung W, Dietz KJ., BMC Plant Biol. 6(), 2006
PMID: 16916444
Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine
AUTHOR UNKNOWN, Biologia Plantarum 59(), 2015
Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14.
Yang L, Ma C, Wang L, Chen S, Li H., J. Plant Physiol. 169(9), 2012
PMID: 22498239
Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.
Yang L, Zhang Y, Zhu N, Koh J, Ma C, Pan Y, Yu B, Chen S, Li H., J. Proteome Res. 12(11), 2013
PMID: 23799291
Molecular biology of salinity tolerance in the context of whole-plant physiology
AUTHOR UNKNOWN, Journal of Experimental Botany 49(), 1998
A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis.
Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J., Cell 120(2), 2005
PMID: 15680330
Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses.
Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S., Plant Physiol. 123(1), 2000
PMID: 10806239
Comparison analysis of transcripts from the halophyte Thellungiella halophila.
Zhang Y, Lai J, Sun S, Li Y, Liu Y, Liang L, Chen M, Xie Q., J Integr Plant Biol 50(10), 2008
PMID: 19017120

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 28338762
PubMed | Europe PMC

Suchen in

Google Scholar