Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings

Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky AV (2017)
PLoS One 12(2): e0172854.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Pan, Xuefang; Wang, Yanting; Lübke, TorbenUniBi ; Hinek, Aleksander; Pshezhetsky, Alexey V.
Abstract / Bemerkung
Vasoactive and mitogenic peptide, endothelin-1 (ET-1) plays an important role in physiology of the ocular tissues by regulating the growth of corneal epithelial cells and maintaining the hemodynamics of intraocular fluids. We have previously established that ET-1 can be degraded in vivo by two lysosomal/secreted serine carboxypeptidases, Cathepsin A (CathA) and Serine Carboxypeptidase 1 (Scpep1) and that gene-targeted CathAS190A /Scpep1-/- mice, deficient in CathA and Scpep1 have a prolonged half-life of circulating ET-1 associated with systemic hypertension. In the current work we report that starting from 6 months of age, ~43% of CathAS190A /Scpep1-/- mice developed corneal clouding that eventually caused vision impairment. Histological evaluation of these mice demonstrated a selective fibrotic thickening and vacuolization of the corneas, resembling human hyperproliferative vesicular corneal stromal dystrophy and coexisting with a peculiar thickening of the skin epidermis. Moreover, we found that cultured corneal epithelial cells, skin fibroblasts and vascular smooth muscle cells derived from CathA/Scpep1-deficient mice, demonstrated a significantly higher proliferative response to treatment with exogenous ET-1, as compared with cells from wild type mice. We also detected increased activation level of ERK1/2 and AKT kinases involved in cell proliferation in the ET-1-treated cultured cells from CathA/Scpep1 deficient mice. Together, results from our experimental model suggest that; in normal tissues the tandem of serine carboxypeptidases, Scpep1 and CathA likely constitutes an important part of the physiological mechanism responsible for the balanced elimination of heightened levels of ET-1 that otherwise would accumulate in tissues and consequently contribute to development of the hyper-proliferative corneal dystrophy and abnormal skin thickening.
Erscheinungsjahr
2017
Zeitschriftentitel
PLoS One
Band
12
Ausgabe
2
Art.-Nr.
e0172854
ISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2909150

Zitieren

Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky AV. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS One. 2017;12(2): e0172854.
Pan, X., Wang, Y., Lübke, T., Hinek, A., & Pshezhetsky, A. V. (2017). Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS One, 12(2), e0172854. doi:10.1371/journal.pone.0172854
Pan, Xuefang, Wang, Yanting, Lübke, Torben, Hinek, Aleksander, and Pshezhetsky, Alexey V. 2017. “Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings”. PLoS One 12 (2): e0172854.
Pan, X., Wang, Y., Lübke, T., Hinek, A., and Pshezhetsky, A. V. (2017). Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS One 12:e0172854.
Pan, X., et al., 2017. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS One, 12(2): e0172854.
X. Pan, et al., “Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings”, PLoS One, vol. 12, 2017, : e0172854.
Pan, X., Wang, Y., Lübke, T., Hinek, A., Pshezhetsky, A.V.: Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS One. 12, : e0172854 (2017).
Pan, Xuefang, Wang, Yanting, Lübke, Torben, Hinek, Aleksander, and Pshezhetsky, Alexey V. “Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings”. PLoS One 12.2 (2017): e0172854.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned.
Drake MT, Clarke BL, Oursler MJ, Khosla S., Endocr Rev 38(4), 2017
PMID: 28651365

59 References

Daten bereitgestellt von Europe PubMed Central.

Molecular biology and biochemistry of the endothelins.
Yanagisawa M, Masaki T., Trends Pharmacol. Sci. 10(9), 1989
PMID: 2690429
Endothelin stimulates aldosterone biosynthesis by dispersed rabbit adreno-capsular cells.
Morishita R, Higaki J, Ogihara T., Biochem. Biophys. Res. Commun. 160(2), 1989
PMID: 2655594
New views on the role of endothelin (minireview).
Goraca A., Endocr Regul 36(4), 2002
PMID: 12466016
Pulmonary fibrosis and chronic lung inflammation in ET-1 transgenic mice.
Hocher B, Schwarz A, Fagan KA, Thone-Reineke C, El-Hag K, Kusserow H, Elitok S, Bauer C, Neumayer HH, Rodman DM, Theuring F., Am. J. Respir. Cell Mol. Biol. 23(1), 2000
PMID: 10873149
Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction.
Amiri F, Virdis A, Neves MF, Iglarz M, Seidah NG, Touyz RM, Reudelhuber TL, Schiffrin EL., Circulation 110(15), 2004
PMID: 15466627
Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1.
Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, Oda H, Kuwaki T, Cao WH, Kamada N., Nature 368(6473), 1994
PMID: 8152482
Endothelin-1 role in human eye: a review.
Salvatore S, Vingolo EM., J Ophthalmol 2010(), 2010
PMID: 21461356
An immunohistochemical study of endothelin-1 in the human eye.
Wollensak G, Schaefer HE, Ihling C., Curr. Eye Res. 17(5), 1998
PMID: 9617550
Endothelin receptor-mediated Ca2+ signaling and isoform expression in bovine corneal epithelial cells.
Tao W, Wu X, Liou GI, Abney TO, Reinach PS., Invest. Ophthalmol. Vis. Sci. 38(1), 1997
PMID: 9008638
ETB and epidermal growth factor receptor stimulation of wound closure in bovine corneal epithelial cells.
Tao W, Liou GI, Wu X, Abney TO, Reinach PS., Invest. Ophthalmol. Vis. Sci. 36(13), 1995
PMID: 7499084
Endothelin-like immunoreactivity in the aqueous humour and in conditioned medium from cultured ciliary epithelial cells.
Lepple-Wienhues A, Becker M, Stahl F, Berweck S, Hensen J, Noske W, Eichhorn M, Wiederholt M., Curr. Eye Res. 11(11), 1992
PMID: 1483334
The in vivo effect of endothelins on retinal circulation in nondiabetic and diabetic rats.
Bursell SE, Clermont AC, Oren B, King GL., Invest. Ophthalmol. Vis. Sci. 36(3), 1995
PMID: 7890491
Neurovascular interactions in the retina: physiological and pathological roles.
Nakahara T, Mori A, Kurauchi Y, Sakamoto K, Ishii K., J. Pharmacol. Sci. 123(2), 2013
PMID: 24067498
Endothelin-1 plasma levels in normal-tension glaucoma: abnormal response to postural changes.
Kaiser HJ, Flammer J, Wenk M, Luscher T., Graefes Arch. Clin. Exp. Ophthalmol. 233(8), 1995
PMID: 8537023
Association of endothelin-1 with normal tension glaucoma: clinical and fundamental studies.
Sugiyama T, Moriya S, Oku H, Azuma I., Surv Ophthalmol 39 Suppl 1(), 1995
PMID: 7660312
Endothelin-1 and nitric oxide levels in patients with glaucoma.
Ghanem AA, Elewa AM, Arafa LF., Ophthalmic Res. 46(2), 2011
PMID: 21282966
Endothelin, astrocytes and glaucoma.
Prasanna G, Krishnamoorthy R, Yorio T., Exp. Eye Res. 93(2), 2010
PMID: 20849847
Endothelin antagonism as an active principle for glaucoma therapy.
Rosenthal R, Fromm M., Br. J. Pharmacol. 162(4), 2011
PMID: 21054341
Endothelin and its suspected role in the pathogenesis and possible treatment of glaucoma.
Shoshani YZ, Harris A, Shoja MM, Rusia D, Siesky B, Arieli Y, Wirostko B., Curr. Eye Res. 37(1), 2011
PMID: 22029631
Enzymatic activity of lysosomal carboxypeptidase (cathepsin) A is required for proper elastic fiber formation and inactivation of endothelin-1.
Seyrantepe V, Hinek A, Peng J, Fedjaev M, Ernest S, Kadota Y, Canuel M, Itoh K, Morales CR, Lavoie J, Tremblay J, Pshezhetsky AV., Circulation 117(15), 2008
PMID: 18391110
Serine carboxypeptidase SCPEP1 and Cathepsin A play complementary roles in regulation of vasoconstriction via inactivation of endothelin-1.
Pan X, Grigoryeva L, Seyrantepe V, Peng J, Kollmann K, Tremblay J, Lavoie JL, Hinek A, Lubke T, Pshezhetsky AV., PLoS Genet. 10(2), 2014
PMID: 24586188
Molecular characterization and gene disruption of mouse lysosomal putative serine carboxypeptidase 1.
Kollmann K, Damme M, Deuschl F, Kahle J, D'Hooge R, Lullmann-Rauch R, Lubke T., FEBS J. 276(5), 2009
PMID: 19187242
Modified Movat's Pentachrome Stain
AUTHOR UNKNOWN, 1986
New technique for culturing corneal epithelial cells of normal mice.
Kobayashi T, Yoshioka R, Shiraishi A, Ohashi Y., Mol. Vis. 15(), 2009
PMID: 19693295
Analysis of immunomodulatory activities of aqueous humor from eyes of mice with experimental autoimmune uveitis.
Ohta K, Wiggert B, Yamagami S, Taylor AW, Streilein JW., J. Immunol. 164(3), 2000
PMID: 10640729
Late onset Tay-Sachs disease in mice with targeted disruption of the Hexa gene: behavioral changes and pathology of the central nervous system.
Miklyaeva EI, Dong W, Bureau A, Fattahie R, Xu Y, Su M, Fick GH, Huang JQ, Igdoura S, Hanai N, Gravel RA., Brain Res. 1001(1-2), 2004
PMID: 14972652
The Ki-67 protein: from the known and the unknown.
Scholzen T, Gerdes J., J. Cell. Physiol. 182(3), 2000
PMID: 10653597
Effects of endothelin-1 on fibroblasts from type 2 diabetic patients: Possible role in wound healing and tissue repair.
Solini A, Santini E, Madec S, Cuccato S, Ferrannini E., Growth Factors 25(6), 2007
PMID: 18365870
Fibroblast matrix gene expression and connective tissue remodeling: role of endothelin-1.
Shi-Wen X, Denton CP, Dashwood MR, Holmes AM, Bou-Gharios G, Pearson JD, Black CM, Abraham DJ., J. Invest. Dermatol. 116(3), 2001
PMID: 11231316
Effect of endothelin-1 (1-31) on extracellular signal-regulated kinase and proliferation of human coronary artery smooth muscle cells.
Yoshizumi M, Kim S, Kagami S, Hamaguchi A, Tsuchiya K, Houchi H, Iwao H, Kido H, Tamaki T., Br. J. Pharmacol. 125(5), 1998
PMID: 9846640
Role of JNK, p38, and ERK in platelet-derived growth factor-induced vascular proliferation, migration, and gene expression.
Zhan Y, Kim S, Izumi Y, Izumiya Y, Nakao T, Miyazaki H, Iwao H., Arterioscler. Thromb. Vasc. Biol. 23(5), 2003
PMID: 12637337
Protein kinase C-delta regulates migration and proliferation of vascular smooth muscle cells through the extracellular signal-regulated kinase 1/2.
Liu B, Ryer EJ, Kundi R, Kamiya K, Itoh H, Faries PL, Sakakibara K, Kent KC., J. Vasc. Surg. 45(1), 2007
PMID: 17210402
Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells.
Chen QW, Edvinsson L, Xu CB., BMC Cell Biol. 10(), 2009
PMID: 19575782
Endothelin-1-induced signaling pathways in vascular smooth muscle cells.
Bouallegue A, Daou GB, Srivastava AK., Curr Vasc Pharmacol 5(1), 2007
PMID: 17266612
Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation.
Kulasekaran P, Scavone CA, Rogers DS, Arenberg DA, Thannickal VJ, Horowitz JC., Am. J. Respir. Cell Mol. Biol. 41(4), 2009
PMID: 19188658
Aberrant expression of sialidase and cancer progression.
Miyagi T., Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 84(10), 2008
PMID: 19075514
Evidence for mitochondrial localization of a novel human sialidase (NEU4).
Yamaguchi K, Hata K, Koseki K, Shiozaki K, Akita H, Wada T, Moriya S, Miyagi T., Biochem. J. 390(Pt 1), 2005
PMID: 15847605
Lysosomal multienzyme complex: biochemistry, genetics, and molecular pathophysiology.
Pshezhetsky AV, Ashmarina M., Prog. Nucleic Acid Res. Mol. Biol. 69(), 2001
PMID: 11550799

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Cloning of a novel retinoid-inducible serine carboxypeptidase from vascular smooth muscle cells.
Chen J, Streb JW, Maltby KM, Kitchen CM, Miano JM., J. Biol. Chem. 276(36), 2001
PMID: 11447226
Corneal dystrophies.
Klintworth GK., Orphanet J Rare Dis 4(), 2009
PMID: 19236704
Later-onset Fabry disease: an adult variant presenting with the cramp-fasciculation syndrome.
Nance CS, Klein CJ, Banikazemi M, Dikman SH, Phelps RG, McArthur JC, Rodriguez M, Desnick RJ., Arch. Neurol. 63(3), 2006
PMID: 16533976
Corneal surface irregularities and episodic pain in a patient with mucolipidosis IV.
Newman NJ, Starck T, Kenyon KR, Lessell S, Fish I, Kolodny EH., Arch. Ophthalmol. 108(2), 1990
PMID: 2302112
Differential diagnosis of Schnyder corneal dystrophy.
Weiss JS, Khemichian AJ., Dev Ophthalmol 48(), 2011
PMID: 21540632
Adult-form galactosialidosis: ocular findings in three cases.
Usui T, Takagi M, Abe H, Iwata K, Tsuji S, Miyatake T., Ophthalmologica 203(4), 1991
PMID: 1784463
Lacritin and other autophagy associated proteins in ocular surface health
AUTHOR UNKNOWN, 2015
Autophagy in lysosomal storage disorders.
Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A., Autophagy 8(5), 2012
PMID: 22647656
Diabetes-induced myocardial structural changes: role of endothelin-1 and its receptors.
Chen S, Evans T, Mukherjee K, Karmazyn M, Chakrabarti S., J. Mol. Cell. Cardiol. 32(9), 2000
PMID: 10966825
Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition.
Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, Kisanuki YY, Yanagisawa M, Hirata K., Circulation 121(22), 2010
PMID: 20497976
Endothelin antagonists in hypertension and kidney disease.
Meyers KE, Sethna C., Pediatr. Nephrol. 28(5), 2012
PMID: 23070275
Endothelin-1 upregulation mediates aging-related cardiac fibrosis.
Wang X, Guo Z, Ding Z, Khaidakov M, Lin J, Xu Z, Sharma SG, Jiwani S, Mehta JL., J. Mol. Cell. Cardiol. 80(), 2015
PMID: 25584774
Profibrotic effects of endothelin-1 via the ETA receptor in cultured human cardiac fibroblasts
AUTHOR UNKNOWN, 2004
Endothelin-mediated cell signaling and proliferation in cultured rabbit corneal epithelial cells.
Takagi H, Reinach PS, Tachado SD, Yoshimura N., Invest. Ophthalmol. Vis. Sci. 35(1), 1994
PMID: 8300340
Localization of endothelin-1 mRNA expression and immunoreactivity in the anterior segment of human eye: expression of ETA and ETB receptors.
Fernandez-Durango R, Rollin R, Mediero A, Roldan-Pallares M, Garcia Feijo J, Garcia Sanchez J, Fernandez-Cruz A, Ripodas A., Mol. Vis. 9(), 2003
PMID: 12692512
Endothelin-1 and ETA/ETB receptor protein and mRNA: expression in normal and vascularized human corneas.
Kuhlmann A, Amann K, Schlotzer-Schrehardt U, Kruse FE, Cursiefen C., Cornea 24(7), 2005
PMID: 16160501
Cathepsin A activity of normal bovine ocular tissues and pathological human intraocular fluids.
Obuchowska I, Stankiewicz A, Mariak Z., Acta Biochim. Pol. 43(4), 1996
PMID: 9104505
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28234994
PubMed | Europe PMC

Suchen in

Google Scholar