Neurophysiology of grasping actions: Evidence from ERPs

Koester D, Schack T, Westerholz J (2016)
Frontiers in Psychology 7: 1996.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 190.24 KB
Abstract / Bemerkung
We use our hands very frequently to interact with our environment. Neuropsychology together with lesion models and intracranial recordings and imaging work yielded important insights into the functional neuroanatomical correlates of grasping, one important function of our hands, pointing toward a functional parietofrontal brain network. Event-related potentials (ERPs) register directly electrical brain activity and are endowed with high temporal resolution but have long been assumed to be susceptible to movement artifacts. Recent work has shown that reliable ERPs can be obtained during movement execution. Here, we review the available ERP work on (uni) manual grasping actions. We discuss various ERP components and how they may be related to functional components of grasping according to traditional distinctions of manual actions such as planning and control phases. The ERP results are largely in line with the assumption of a parietofrontal network. But other questions remain, in particular regarding the temporal succession of frontal and parietal ERP effects. With the low number of ERP studies on grasping, not all ERP effects appear to be coherent with one another. Understanding the control of our hands may help to develop further neurocognitive theories of grasping and to make progress in prosthetics, rehabilitation or development of technical systems for support of human actions. Full text freely available under:
manual action; EEG; ERP; slow wave; cognition; action
Frontiers in Psychology
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Koester D, Schack T, Westerholz J. Neurophysiology of grasping actions: Evidence from ERPs. Frontiers in Psychology. 2016;7: 1996.
Koester, D., Schack, T., & Westerholz, J. (2016). Neurophysiology of grasping actions: Evidence from ERPs. Frontiers in Psychology, 7, 1996. doi:10.3389/fpsyg.2016.01996
Koester, Dirk, Schack, Thomas, and Westerholz, Jan. 2016. “Neurophysiology of grasping actions: Evidence from ERPs”. Frontiers in Psychology 7: 1996.
Koester, D., Schack, T., and Westerholz, J. (2016). Neurophysiology of grasping actions: Evidence from ERPs. Frontiers in Psychology 7:1996.
Koester, D., Schack, T., & Westerholz, J., 2016. Neurophysiology of grasping actions: Evidence from ERPs. Frontiers in Psychology, 7: 1996.
D. Koester, T. Schack, and J. Westerholz, “Neurophysiology of grasping actions: Evidence from ERPs”, Frontiers in Psychology, vol. 7, 2016, : 1996.
Koester, D., Schack, T., Westerholz, J.: Neurophysiology of grasping actions: Evidence from ERPs. Frontiers in Psychology. 7, : 1996 (2016).
Koester, Dirk, Schack, Thomas, and Westerholz, Jan. “Neurophysiology of grasping actions: Evidence from ERPs”. Frontiers in Psychology 7 (2016): 1996.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Movement Interferes with Visuospatial Working Memory during the Encoding: An ERP Study.
Gunduz Can R, Schack T, Koester D., Front Psychol 8(), 2017
PMID: 28611714

90 References

Daten bereitgestellt von Europe PubMed Central.

Brain function overlaps when people observe emblems, speech, and grasping.
Andric M, Solodkin A, Buccino G, Goldin-Meadow S, Rizzolatti G, Small SL., Neuropsychologia 51(8), 2013
PMID: 23583968
An object for an action, the same object for other actions: effects on hand shaping.
Ansuini C, Giosa L, Turella L, Altoe G, Castiello U., Exp Brain Res 185(1), 2007
PMID: 17909766
Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex.
Archambault PS, Caminiti R, Battaglia-Mayer A., Cereb. Cortex 19(12), 2009
PMID: 19359349
Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing.
Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M, Van Essen DC., J. Neurosci. 23(11), 2003
PMID: 12805308
Differential cortical activity for precision and whole-hand visually guided grasping in humans.
Begliomini C, Wall MB, Smith AT, Castiello U., Eur. J. Neurosci. 25(4), 2007
PMID: 17331220
It's in the eyes: Planning precise manual actions before execution.
Belardinelli A, Stepper MY, Butz MV., J Vis 16(1), 2016
PMID: 26818971
Expertise affects representation structure and categorical activation of grasp postures in climbing.
Blasing BE, Guldenpenning I, Koester D, Schack T., Front Psychol 5(), 2014
PMID: 25309480
Subliminal display of action words interferes with motor planning: a combined EEG and kinematic study.
Boulenger V, Silber BY, Roy AC, Paulignan Y, Jeannerod M, Nazir TA., J. Physiol. Paris 102(1-3), 2008
PMID: 18485678
Awareness affects motor planning for goal-oriented actions.
Bozzacchi C, Giusti MA, Pitzalis S, Spinelli D, Di Russo F., Biol Psychol 89(2), 2012
PMID: 22234365
Similar cerebral motor plans for real and virtual actions.
Bozzacchi C, Giusti MA, Pitzalis S, Spinelli D, Di Russo F., PLoS ONE 7(10), 2012
PMID: 23112847
Parieto-frontal coding of reaching: an integrated framework.
Burnod Y, Baraduc P, Battaglia-Mayer A, Guigon E, Koechlin E, Ferraina S, Lacquaniti F, Caminiti R., Exp Brain Res 129(3), 1999
PMID: 10591906
The neuroscience of grasping.
Castiello U., Nat. Rev. Neurosci. 6(9), 2005
PMID: 16100518
Does the type of prehension influence the kinematics of reaching?
Castiello U, Bennett KM, Paulignan Y., Behav. Brain Res. 50(1-2), 1992
PMID: 1449650
A spreading-activation theory of semantic processing.
Collins A., Loftus E.., 1975
Co-registering kinematics and evoked related potentials during visually guided reach-to-grasp movements.
De Sanctis T, Tarantino V, Straulino E, Begliomini C, Castiello U., PLoS ONE 8(6), 2013
PMID: 23755241
A century later: Woodworth's (1899) two-component model of goal-directed aiming.
Elliott D, Helsen WF, Chua R., Psychol Bull 127(3), 2001
PMID: 11393300
The dorsomedial pathway is not just for reaching: grasping neurons in the medial parieto-occipital cortex of the macaque monkey.
Fattori P, Raos V, Breveglieri R, Bosco A, Marzocchi N, Galletti C., J. Neurosci. 30(1), 2010
PMID: 20053915
Brain location and visual topography of cortical area V6A in the macaque monkey.
Galletti C, Fattori P, Kutz DF, Gamberini M., Eur. J. Neurosci. 11(2), 1999
PMID: 10051757
Role of the medial parieto-occipital cortex in the control of reaching and grasping movements.
Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P., Exp Brain Res 153(2), 2003
PMID: 14517595
The neural basis of tool use.
Goldenberg G, Spatt J., Brain 132(Pt 6), 2009
PMID: 19351777
Transforming vision into action.
Goodale MA., Vision Res. 51(13), 2010
PMID: 20691202
The cognitive neuroscience of prehension: recent developments.
Grafton ST., Exp Brain Res 204(4), 2010
PMID: 20532487
Decision time for free will.
Haggard P., Neuron 69(3), 2011
PMID: 21315252
Goal representation in human anterior intraparietal sulcus.
Hamilton AF, Grafton ST., J. Neurosci. 26(4), 2006
PMID: 16436599
Discrete parieto-frontal functional connectivity related to grasping.
Hattori N, Shibasaki H, Wheaton L, Wu T, Matsuhashi M, Hallett M., J. Neurophysiol. 101(3), 2008
PMID: 19109459
Planning and control of hand orientation in grasping movements.
Herbort O, Butz MV., Exp Brain Res 202(4), 2010
PMID: 20195848
Habitual and goal-directed factors in (everyday) object handling.
Herbort O, Butz MV., Exp Brain Res 213(4), 2011
PMID: 21748333
On semi-blind source separation using spatial constraints with applications in EEG analysis.
Hesse CW, James CJ., IEEE Trans Biomed Eng 53(12 Pt 1), 2006
PMID: 17153210
“Intersegmental coordination during reaching at natural visual objects,” in
Jeannerod M.., 1981
The timing of natural prehension movements.
Jeannerod M., J Mot Behav 16(3), 1984
PMID: 15151851

Jeannerod M.., 1988
p75 and Trk: a two-receptor system.
Chao MV, Hempstead BL., Trends Neurosci. 18(7), 1995
PMID: 7571013
The informational character of self-organized coordination dynamics.
Kelso J.., 1994
Relative timing in brain and behaviour: some observations about the generalized motor program and self-organized coordination dynamics.
Kelso J.., 1997
ERP correlates of linear hand movements: distance dependent changes.
Kirsch W, Hennighausen E., Clin Neurophysiol 121(8), 2010
PMID: 20227915
The end-state comfort effect in 3- to 8-year-old children in two object manipulation tasks.
Knudsen B, Henning A, Wunsch K, Weigelt M, Aschersleben G., Front Psychol 3(), 2012
PMID: 23112786
Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale.
Kornhuber H., Deecke L.., 1965
Dorsal and ventral processing under dual-task conditions.
Kunde W, Landgraf F, Paelecke M, Kiesel A., Psychol Sci 18(2), 2007
PMID: 17425526
Optimal control in the critical phase of movement: a functional approach to motor planning processes.
Kunzell S, Augste C, Hering M, Maier S, Meinzinger AM, Sießmeir D., Acta Psychol (Amst) 143(3), 2013
PMID: 23727597
Supplementary motor area activation while tapping bimanually different rhythms in musicians.
Lang W, Obrig H, Lindinger G, Cheyne D, Deecke L., Exp Brain Res 79(3), 1990
PMID: 2340870
Neural correlates of advance movement preparation: a dipole source analysis approach.
Leuthold H, Jentzsch I., Brain Res Cogn Brain Res 12(2), 2001
PMID: 11587891
“The role of memory in the control of action,” in
Logan G.., 2009
The role of immediate and final goals in action planning: an fMRI study.
Majdandzic J, Grol MJ, van Schie HT, Verhagen L, Toni I, Bekkering H., Neuroimage 37(2), 2007
PMID: 17587600
Constraints on human arm movement trajectories.
Marteniuk RG, MacKenzie CL, Jeannerod M, Athenes S, Dugas C., Can J Psychol 41(3), 1987
PMID: 3502905
Limb-segment selection in drawing behaviour.
Meulenbroek RG, Rosenbaum DA, Thomassen AJ, Schomaker LR., Q J Exp Psychol A 46(2), 1993
PMID: 8316638
Neurofunctional modulation of brain regions by distinct forms of motor cognition and movement features.
Piefke M, Kramer K, Korte M, Schulte-Ruther M, Korte JM, Wohlschlager AM, Weber J, Shah NJ, Huber W, Fink GR., Hum Brain Mapp 30(2), 2009
PMID: 18064585
250 ms to code for action affordance during observation of manipulable objects.
Proverbio AM, Adorni R, D'Aniello GE., Neuropsychologia 49(9), 2011
PMID: 21664367
Brain mechanisms linking language and action.
Pulvermuller F., Nat. Rev. Neurosci. 6(7), 2005
PMID: 15959465
Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements.
Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M., Exp Brain Res 71(3), 1988
PMID: 3416965
Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding.
Rizzolatti G, Cattaneo L, Fabbri-Destro M, Rozzi S., Physiol. Rev. 94(2), 2014
PMID: 24692357
“Cortical mechanisms subserving object grasping and action recognition: a new view on the cortical motor functions,” in
Rizzolatti G., Fogassi L., Gallese V.., 2000
Time course of movement planning: selection of handgrips for object manipulation.
Rosenbaum D., Vaughan J., Jorgensen M., Barnes H.., 1992
Representation and learning in motor action - Bridges between experimental research and cognitive robotics.
Schack T., Ritter H.., 2013
Manual (a)symmetries in grasp posture planning: a short review.
Seegelke C, Hughes CM, Schack T., Front Psychol 5(), 2014
PMID: 25566153
A new view on grasping.
Smeets JB, Brenner E., Motor Control 3(3), 1999
PMID: 10409797
The functional role of working memory in the (re-)planning and execution of grasping movements.
Spiegel M., Koester D., Schack T.., 2013
Programs for action in superior parietal cortex: a triple-pulse TMS investigation.
Striemer CL, Chouinard PA, Goodale MA., Neuropsychologia 49(9), 2011
PMID: 21539851
Object size modulates fronto-parietal activity during reaching movements.
Tarantino V, De Sanctis T, Straulino E, Begliomini C, Castiello U., Eur. J. Neurosci. 39(9), 2014
PMID: 24593322
On the relations between seen objects and components of potential actions.
Tucker M, Ellis R., J Exp Psychol Hum Percept Perform 24(3), 1998
PMID: 9627419
Hand path priming in manual obstacle avoidance: evidence for abstract spatiotemporal forms in human motor control.
van der Wel RP, Fleckenstein RM, Jax SA, Rosenbaum DA., J Exp Psychol Hum Percept Perform 33(5), 2007
PMID: 17924811
Semantics in action: an electrophysiological study on the use of semantic knowledge for action.
van Elk M, van Schie HT, Bekkering H., J. Physiol. Paris 102(1-3), 2008
PMID: 18467079
Pouring or chilling a bottle of wine: an fMRI study on the prospective planning of object-directed actions.
van Elk M, Viswanathan S, van Schie HT, Bekkering H, Grafton ST., Exp Brain Res 218(2), 2012
PMID: 22349497
Control of hand movements after striatocapsular stroke: high-resolution temporal analysis of the function of ipsilateral activation.
Verleger R, Adam S, Rose M, Vollmer C, Wauschkuhn B, Kompf D., Clin Neurophysiol 114(8), 2003
PMID: 12888030
Dimensional overlap between arrows as cueing stimuli and responses?. Evidence from contra-ipsilateral differences in EEG potentials.
Verleger R, Vollmer C, Wauschkuhn B, van der Lubbe RH, Wascher E., Brain Res Cogn Brain Res 10(1-2), 2000
PMID: 10978697
Consequences of altered cerebellar input for the cortical regulation of motor coordination, as reflected in EEG potentials.
Verleger R, Wascher E, Wauschkuhn B, Jaskowski P, Allouni B, Trillenberg P, Wessel K., Exp Brain Res 127(4), 1999
PMID: 10480276
Movement-related cortical potentials preceding sequential and goal-directed finger and arm movements in patients with cerebellar atrophy.
Wessel K, Verleger R, Nazarenus D, Vieregge P, Kompf D., Electroencephalogr Clin Neurophysiol 92(4), 1994
PMID: 7517855
Event-related brain potentials for goal-related power grips.
Westerholz J, Schack T, Koester D., PLoS ONE 8(7), 2013
PMID: 23844211
Habitual vs non-habitual manual actions: an ERP study on overt movement execution.
Westerholz J, Schack T, Schutz C, Koester D., PLoS ONE 9(4), 2014
PMID: 24691654
Left parietal activation related to planning, executing and suppressing praxis hand movements.
Wheaton L, Fridman E, Bohlhalter S, Vorbach S, Hallett M., Clin Neurophysiol 120(5), 2009
PMID: 19345141
Temporal activation pattern of parietal and premotor areas related to praxis movements.
Wheaton LA, Shibasaki H, Hallett M., Clin Neurophysiol 116(5), 2005
PMID: 15826863
Posterior parietal negativity preceding self-paced praxis movements.
Wheaton LA, Yakota S, Hallett M., Exp Brain Res 163(4), 2005
PMID: 15883800
Computational principles of movement neuroscience.
Wolpert DM, Ghahramani Z., Nat. Neurosci. 3 Suppl(), 2000
PMID: 11127840
The accuracy of voluntary movement.
Woodworth R.., 1899
Word generation affects continuous hand movements.
Zhang L, Wininger M, Rosenbaum DA., J Mot Behav 46(2), 2014
PMID: 24528200
Externes Material:
Wissenschaftliche Version
open full text

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 28066310
PubMed | Europe PMC

Suchen in

Google Scholar