The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila

Jagmann N, Bleicher V, Busche T, Kalinowski J, Philipp B (2016)
ENVIRONMENTAL MICROBIOLOGY 18(10): 3550-3564.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
The opportunistic pathogen Pseudomonas aeruginosa controls the production of virulence factors by quorum sensing (QS). Besides cell density, QS in P. aeruginosa is co-regulated by metabolic influences, especially nutrient limitation. Previously, a co-culture model system was established consisting of P. aeruginosa and the chitinolytic bacterium Aeromonas hydrophila, in which parasitic growth of P. aeruginosa is strictly dependent on the QS-controlled production of pyocyanin in response to nutrient limitation (Jagmann et al., 2010). In this study, the co-culture was employed to identify novel genes involved in the regulation of pyocyanin production. Via transposon mutagenesis, the gene gbuA encoding a guanidinobutyrase was identified, deletion of which led to a loss of pyocyanin production in co-cultures and to a reduced pyocyanin production in single cultures. Addition of the natural substrate of GbuA to the mutant strain enhanced the negative effect on pyocyanin production in single cultures. The gbuA mutant showed a reduced transcription of the pqsABCDE operon and could be complemented by PqsE overexpression and addition of alkylquinolone signal molecules. The strong effect of gbuA deletion on the QS-controlled pyocyanin production in co-cultures showed the value of this approach for the discovery of novel gene functions linking metabolism and QS in P. aeruginosa.
Erscheinungsjahr
Zeitschriftentitel
ENVIRONMENTAL MICROBIOLOGY
Band
18
Ausgabe
10
Seite(n)
3550-3564
ISSN
eISSN
PUB-ID

Zitieren

Jagmann N, Bleicher V, Busche T, Kalinowski J, Philipp B. The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila. ENVIRONMENTAL MICROBIOLOGY. 2016;18(10):3550-3564.
Jagmann, N., Bleicher, V., Busche, T., Kalinowski, J., & Philipp, B. (2016). The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila. ENVIRONMENTAL MICROBIOLOGY, 18(10), 3550-3564. doi:10.1111/1462-2920.13419
Jagmann, N., Bleicher, V., Busche, T., Kalinowski, J., and Philipp, B. (2016). The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila. ENVIRONMENTAL MICROBIOLOGY 18, 3550-3564.
Jagmann, N., et al., 2016. The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila. ENVIRONMENTAL MICROBIOLOGY, 18(10), p 3550-3564.
N. Jagmann, et al., “The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila”, ENVIRONMENTAL MICROBIOLOGY, vol. 18, 2016, pp. 3550-3564.
Jagmann, N., Bleicher, V., Busche, T., Kalinowski, J., Philipp, B.: The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila. ENVIRONMENTAL MICROBIOLOGY. 18, 3550-3564 (2016).
Jagmann, Nina, Bleicher, Vera, Busche, Tobias, Kalinowski, Jörn, and Philipp, Bodo. “The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila”. ENVIRONMENTAL MICROBIOLOGY 18.10 (2016): 3550-3564.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

2,3-Butanediol catabolism in Pseudomonas aeruginosa PAO1.
Liu Q, Liu Y, Kang Z, Xiao D, Gao C, Xu P, Ma C., Environ Microbiol 20(11), 2018
PMID: 30058099
The aliphatic amidase AmiE is involved in regulation of Pseudomonas aeruginosa virulence.
Clamens T, Rosay T, Crépin A, Grandjean T, Kentache T, Hardouin J, Bortolotti P, Neidig A, Mooij M, Hillion M, Vieillard J, Cosette P, Overhage J, O'Gara F, Bouffartigues E, Dufour A, Chevalier S, Guery B, Cornelis P, Feuilloley MG, Lesouhaitier O., Sci Rep 7(), 2017
PMID: 28117457

96 References

Daten bereitgestellt von Europe PubMed Central.

Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa.
Bazire A, Dheilly A, Diab F, Morin D, Jebbar M, Haras D, Dufour A., FEMS Microbiol. Lett. 253(1), 2005
PMID: 16239086
Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling.
Chu W, Zere TR, Weber MM, Wood TK, Whiteley M, Hidalgo-Romano B, Valenzuela E Jr, McLean RJ., Appl. Environ. Microbiol. 78(2), 2011
PMID: 22101045
C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth.
Chua SL, Sivakumar K, Rybtke M, Yuan M, Andersen JB, Nielsen TE, Givskov M, Tolker-Nielsen T, Cao B, Kjelleberg S, Yang L., Sci Rep 5(), 2015
PMID: 25992876
Benchtop and microcentrifuge preparation of Pseudomonas aeruginosa competent cells.
Chuanchuen R, Narasaki CT, Schweizer HP., BioTechniques 33(4), 2002
PMID: 12398182
The metabolic versatility of pseudomonads.
Clarke PH., Antonie Van Leeuwenhoek 48(2), 1982
PMID: 6808915
Competition sensing: the social side of bacterial stress responses.
Cornforth DM, Foster KR., Nat. Rev. Microbiol. 11(4), 2013
PMID: 23456045
Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication.
Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG., Proc. Natl. Acad. Sci. U.S.A. 101(5), 2004
PMID: 14739337
The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing.
Dotsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe M, Geffers R, Haussler S., PLoS ONE 7(2), 2012
PMID: 22319605
The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections.
Driscoll JA, Brody SL, Kollef MH., Drugs 67(3), 2007
PMID: 17335295
PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system.
Farrow JM 3rd, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC., J. Bacteriol. 190(21), 2008
PMID: 18776012
Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein.
Folders J, Algra J, Roelofs MS, van Loon LC, Tommassen J, Bitter W., J. Bacteriol. 183(24), 2001
PMID: 11717261
Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa.
Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C., J. Bacteriol. 184(23), 2002
PMID: 12426334
Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa.
Gamper M, Zimmermann A, Haas D., J. Bacteriol. 173(15), 1991
PMID: 1906871
The ecology of chitin degradation
Gooday, Adv Microb Ecol 11(), 1990

Haas, 1990
Pseudomonas aeruginosa: assessment of risk from drinking water.
Hardalo C, Edberg SC., Crit. Rev. Microbiol. 23(1), 1997
PMID: 9097014
Microbial ecology of the cystic fibrosis lung.
Harrison F., Microbiology (Reading, Engl.) 153(Pt 4), 2007
PMID: 17379702
Environmental predators as models for bacterial pathogenesis.
Hilbi H, Weber SS, Ragaz C, Nyfeler Y, Urwyler S., Environ. Microbiol. 9(3), 2007
PMID: 17298357
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Site-directed mutagenesis by overlap extension using the polymerase chain reaction.
Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR., Gene 77(1), 1989
PMID: 2744487
Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung.
Hogardt M, Heesemann J., Int. J. Med. Microbiol. 300(8), 2010
PMID: 20943439

Itoh, 2004
Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila.
Jagmann N, Brachvogel HP, Philipp B., Environ. Microbiol. 12(6), 2010
PMID: 20553557
The genus Aeromonas: taxonomy, pathogenicity, and infection.
Janda JM, Abbott SL., Clin. Microbiol. Rev. 23(1), 2010
PMID: 20065325
The fourth arginine catabolic pathway of Pseudomonas aeruginosa.
Jann A, Matsumoto H, Haas D., J. Gen. Microbiol. 134(4), 1988
PMID: 3141581
RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways.
Jensen V, Lons D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, Munch R, Haussler S., J. Bacteriol. 188(24), 2006
PMID: 17028277
The multiple signaling systems regulating virulence in Pseudomonas aeruginosa.
Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ., Microbiol. Mol. Biol. Rev. 76(1), 2012
PMID: 22390972
ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa.
Jones CJ, Newsom D, Kelly B, Irie Y, Jennings LK, Xu B, Limoli DH, Harrison JJ, Parsek MR, White P, Wozniak DJ., PLoS Pathog. 10(3), 2014
PMID: 24603766
Multifactorial Competition and Resistance in a Two-Species Bacterial System.
Khare A, Tavazoie S., PLoS Genet. 11(12), 2015
PMID: 26647077
Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy.
Klebensberger J, Lautenschlager K, Bressler D, Wingender J, Philipp B., Environ. Microbiol. 9(9), 2007
PMID: 17686022
Efficient amplification of multiple transposon-flanking sequences.
Kwon YM, Ricke SC., J. Microbiol. Methods 41(3), 2000
PMID: 10958964
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
The role of pyocyanin in Pseudomonas aeruginosa infection.
Lau GW, Hassett DJ, Ran H, Kong F., Trends Mol Med 10(12), 2004
PMID: 15567330
A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit.
Lequette Y, Lee JH, Ledgham F, Lazdunski A, Greenberg EP., J. Bacteriol. 188(9), 2006
PMID: 16621831
Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa.
Lu CD, Yang Z, Li W., J. Bacteriol. 186(12), 2004
PMID: 15175299
YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa.
Malone JG, Jaeger T, Spangler C, Ritz D, Spang A, Arrieumerlou C, Kaever V, Landmann R, Jenal U., PLoS Pathog. 6(3), 2010
PMID: 20300602
Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1.
Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS., J. Bacteriol. 183(21), 2001
PMID: 11591691
Risk assessment of Pseudomonas aeruginosa in water.
Mena KD, Gerba CP., Rev Environ Contam Toxicol 201(), 2009
PMID: 19484589
Of two make one: the biosynthesis of phenazines.
Mentel M, Ahuja EG, Mavrodi DV, Breinbauer R, Thomashow LS, Blankenfeldt W., Chembiochem 10(14), 2009
PMID: 19658148

Miller, 1996

Miller, 1972
Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms.
Morales DK, Jacobs NJ, Rajamani S, Krishnamurthy M, Cubillos-Ruiz JR, Hogan DA., Mol. Microbiol. 78(6), 2010
PMID: 21143312
The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing.
Oglesby AG, Farrow JM 3rd, Lee JH, Tomaras AP, Greenberg EP, Pesci EC, Vasil ML., J. Biol. Chem. 283(23), 2008
PMID: 18424436
Distribution of Pseudomonas aeruginosa in a riverine ecosystem.
Pellett S, Bigley DV, Grimes DJ., Appl. Environ. Microbiol. 45(1), 1983
PMID: 6401982
Turnover of intracellular proteins.
Pine MJ., Annu. Rev. Microbiol. 26(), 1972
PMID: 4562805
The survival of starved bacteria.
POSTGATE JR, HUNTER JR., J. Gen. Microbiol. 29(), 1962
PMID: 13985691
Common virulence factors for bacterial pathogenicity in plants and animals.
Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM., Science 268(5219), 1995
PMID: 7604262
RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa.
Rampioni G, Schuster M, Greenberg EP, Bertani I, Grasso M, Venturi V, Zennaro E, Leoni L., Mol. Microbiol. 66(6), 2007
PMID: 18045385
Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity.
Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS, Price-Whelan A, Dietrich LE., Proc. Natl. Acad. Sci. U.S.A. 109(47), 2012
PMID: 23129634
A major Pseudomonas aeruginosa clone common to patients and aquatic habitats.
Romling U, Wingender J, Muller H, Tummler B., Appl. Environ. Microbiol. 60(6), 1994
PMID: 8031075
The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing.
Schuster M, Hawkins AC, Harwood CS, Greenberg EP., Mol. Microbiol. 51(4), 2004
PMID: 14763974
A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa.
Schuster M, Greenberg EP., Int. J. Med. Microbiol. 296(2-3), 2006
PMID: 16476569
Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process.
Schuster A, Kubicek CP, Friedl MA, Druzhinina IS, Schmoll M., BMC Genomics 8(), 2007
PMID: 18053205
Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria.
Smits TH, Balada SB, Witholt B, van Beilen JB., J. Bacteriol. 184(6), 2002
PMID: 11872725
Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules.
Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GS., J. Bacteriol. 179(17), 1997
PMID: 9286976
Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa.
Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC., J. Bacteriol. 187(13), 2005
PMID: 15968046
Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment.
Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH., J. Bacteriol. 185(7), 2003
PMID: 12644477
Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa.
Whiteley M, Lee KM, Greenberg EP., Proc. Natl. Acad. Sci. U.S.A. 96(24), 1999
PMID: 10570171
Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes.
Whiteley M, Greenberg EP., J. Bacteriol. 183(19), 2001
PMID: 11544214
Quorum sensing, communication and cross-kingdom signalling in the bacterial world.
Williams P., Microbiology (Reading, Engl.) 153(Pt 12), 2007
PMID: 18048907
Look who's talking: communication and quorum sensing in the bacterial world.
Williams P, Winzer K, Chan WC, Camara M., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 362(1483), 2007
PMID: 17360280
Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes.
Winsor GL, Van Rossum T, Lo R, Khaira B, Whiteside MD, Hancock RE, Brinkman FS., Nucleic Acids Res. 37(Database issue), 2008
PMID: 18978025
Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa.
Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, Miyada CG, Lory S., Proc. Natl. Acad. Sci. U.S.A. 100(14), 2003
PMID: 12815109
MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands.
Xiao G, Deziel E, He J, Lepine F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, Stachel SE, Rahme LG., Mol. Microbiol. 62(6), 2006
PMID: 17083468

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27322205
PubMed | Europe PMC

Suchen in

Google Scholar