A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose

Wolf J, Stark H, Fafenrot K, Albersmeier A, Pham TK, Mueller KB, Meyer BH, Hoffmann L, Shen L, Albaum SP, Kouril T, et al. (2016)
MOLECULAR MICROBIOLOGY 102(5): 882-908.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wolf, Jacqueline; Stark, Helge; Fafenrot, Katharina; Albersmeier, AndreasUniBi; Pham, Trong K.; Mueller, Katrin B.; Meyer, Benjamin H.; Hoffmann, Lena; Shen, Lu; Albaum, Stefan P.; Kouril, Theresa; Schmidt-Hohagen, Kerstin
Alle
Abstract / Bemerkung
Archaea are characterised by a complex metabolism with many unique enzymes that differ from their bacterial and eukaryotic counterparts. The thermoacidophilic archaeon Sulfolobus solfataricus is known for its metabolic versatility and is able to utilize a great variety of different carbon sources. However, the underlying degradation pathways and their regulation are often unknown. In this work, the growth on different carbon sources was analysed, using an integrated systems biology approach. The comparison of growth on L-fucose and D-glucose allows first insights into the genome-wide changes in response to the two carbon sources and revealed a new pathway for L-fucose degradation in S. solfataricus. During growth on L-fucose major changes in the central carbon metabolic network, as well as an increased activity of the glyoxylate bypass and the 3-hydroxypropionate/4-hydroxybutyrate cycle were observed. Within the newly discovered pathway for L-fucose degradation the following key reactions were identified: (i) L-fucose oxidation to L-fuconate via a dehydrogenase, (ii) dehydration to 2-keto-3-deoxy-L-fuconate via dehydratase, (iii) 2-keto-3-deoxy-L-fuconate cleavage to pyruvate and L-lactaldehyde via aldolase and (iv) L-lactaldehyde conversion to L-lactate via aldehyde dehydrogenase. This pathway as well as L-fucose transport shows interesting overlaps to the D-arabinose pathway, representing another example for pathway promiscuity in Sulfolobus species.
Erscheinungsjahr
2016
Zeitschriftentitel
MOLECULAR MICROBIOLOGY
Band
102
Ausgabe
5
Seite(n)
882-908
ISSN
0950-382X
eISSN
1365-2958
Page URI
https://pub.uni-bielefeld.de/record/2907722

Zitieren

Wolf J, Stark H, Fafenrot K, et al. A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose. MOLECULAR MICROBIOLOGY. 2016;102(5):882-908.
Wolf, J., Stark, H., Fafenrot, K., Albersmeier, A., Pham, T. K., Mueller, K. B., Meyer, B. H., et al. (2016). A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose. MOLECULAR MICROBIOLOGY, 102(5), 882-908. doi:10.1111/mmi.13498
Wolf, Jacqueline, Stark, Helge, Fafenrot, Katharina, Albersmeier, Andreas, Pham, Trong K., Mueller, Katrin B., Meyer, Benjamin H., et al. 2016. “A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose”. MOLECULAR MICROBIOLOGY 102 (5): 882-908.
Wolf, J., Stark, H., Fafenrot, K., Albersmeier, A., Pham, T. K., Mueller, K. B., Meyer, B. H., Hoffmann, L., Shen, L., Albaum, S. P., et al. (2016). A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose. MOLECULAR MICROBIOLOGY 102, 882-908.
Wolf, J., et al., 2016. A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose. MOLECULAR MICROBIOLOGY, 102(5), p 882-908.
J. Wolf, et al., “A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose”, MOLECULAR MICROBIOLOGY, vol. 102, 2016, pp. 882-908.
Wolf, J., Stark, H., Fafenrot, K., Albersmeier, A., Pham, T.K., Mueller, K.B., Meyer, B.H., Hoffmann, L., Shen, L., Albaum, S.P., Kouril, T., Schmidt-Hohagen, K., Neumann-Schaal, M., Braesen, C., Kalinowski, J., Wright, P.C., Albers, S.-V., Schomburg, D., Siebers, B.: A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose. MOLECULAR MICROBIOLOGY. 102, 882-908 (2016).
Wolf, Jacqueline, Stark, Helge, Fafenrot, Katharina, Albersmeier, Andreas, Pham, Trong K., Mueller, Katrin B., Meyer, Benjamin H., Hoffmann, Lena, Shen, Lu, Albaum, Stefan P., Kouril, Theresa, Schmidt-Hohagen, Kerstin, Neumann-Schaal, Meina, Braesen, Christopher, Kalinowski, Jörn, Wright, Phillip C., Albers, Sonja-Verena, Schomburg, Dietmar, and Siebers, Bettina. “A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose”. MOLECULAR MICROBIOLOGY 102.5 (2016): 882-908.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Novel non-phosphorylative pathway of pentose metabolism from bacteria.
Watanabe S, Fukumori F, Nishiwaki H, Sakurai Y, Tajima K, Watanabe Y., Sci Rep 9(1), 2019
PMID: 30655589
The Carbon Switch at the Level of Pyruvate and Phosphoenolpyruvate in Sulfolobus solfataricus P2.
Haferkamp P, Tjaden B, Shen L, Bräsen C, Kouril T, Siebers B., Front Microbiol 10(), 2019
PMID: 31031731
Early Response of Sulfolobus acidocaldarius to Nutrient Limitation.
Bischof LF, Haurat MF, Hoffmann L, Albersmeier A, Wolf J, Neu A, Pham TK, Albaum SP, Jakobi T, Schouten S, Neumann-Schaal M, Wright PC, Kalinowski J, Siebers B, Albers SV., Front Microbiol 9(), 2018
PMID: 30687244
Profiling of glucose-induced transcription in Sulfolobus acidocaldarius DSM 639.
Park J, Lee A, Lee HH, Park I, Seo YS, Cha J., Genes Genomics 40(11), 2018
PMID: 30315522
Metabolic Reprogramming of Clostridioides difficile During the Stationary Phase With the Induction of Toxin Production.
Hofmann JD, Otto A, Berges M, Biedendieck R, Michel AM, Becher D, Jahn D, Neumann-Schaal M., Front Microbiol 9(), 2018
PMID: 30186274
Iron Regulation in Clostridioides difficile.
Berges M, Michel AM, Lassek C, Nuss AM, Beckstette M, Dersch P, Riedel K, Sievers S, Becher D, Otto A, Maaß S, Rohde M, Eckweiler D, Borrero-de Acuña JM, Jahn M, Neumann-Schaal M, Jahn D., Front Microbiol 9(), 2018
PMID: 30619231
Manual curation and reannotation of the genomes of Clostridium difficile 630Δerm and C. difficile 630.
Dannheim H, Riedel T, Neumann-Schaal M, Bunk B, Schober I, Spröer C, Chibani CM, Gronow S, Liesegang H, Overmann J, Schomburg D., J Med Microbiol 66(3), 2017
PMID: 28357980
Clostridioides difficile 630Δerm in silico and in vivo - quantitative growth and extensive polysaccharide secretion.
Dannheim H, Will SE, Schomburg D, Neumann-Schaal M., FEBS Open Bio 7(4), 2017
PMID: 28396843
Extremely thermophilic energy metabolisms: biotechnological prospects.
Straub CT, Zeldes BM, Schut GJ, Adams MW, Kelly RM., Curr Opin Biotechnol 45(), 2017
PMID: 28319854
Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus.
Stark H, Wolf J, Albersmeier A, Pham TK, Hofmann JD, Siebers B, Kalinowski J, Wright PC, Neumann-Schaal M, Schomburg D., FEBS J 284(13), 2017
PMID: 28497654
Sulfolobus - A Potential Key Organism in Future Biotechnology.
Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O., Front Microbiol 8(), 2017
PMID: 29312184

110 References

Daten bereitgestellt von Europe PubMed Central.

Human embryonic stem cells and embryonal carcinoma cells have overlapping and distinct metabolic signatures.
Abu Dawud R, Schreiber K, Schomburg D, Adjaye J., PLoS ONE 7(6), 2012
PMID: 22768158
The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation.
Ahmed H, Ettema TJ, Tjaden B, Geerling AC, van der Oost J, Siebers B., Biochem. J. 390(Pt 2), 2005
PMID: 15869466
Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp.
Alber B, Olinger M, Rieder A, Kockelkorn D, Jobst B, Hugler M, Fuchs G., J. Bacteriol. 188(24), 2006
PMID: 17041055
Differential expression analysis for sequence count data.
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Naturally occurring polyamines: interaction with macromolecules.
Bachrach U., Curr. Protein Pept. Sci. 6(6), 2005
PMID: 16381604
Identification and characterization of 2-keto-3-deoxy-L-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: Implications to L-rhamnose metabolism in archaea
Bae, Extrem Life Extreme Cond 19(), 2015
The control of the false discovery rate in multiple testing under dependency
Benjamini, Ann Stat 29(), 2001
A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.
Berg IA, Kockelkorn D, Buckel W, Fuchs G., Science 318(5857), 2007
PMID: 18079405
Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota.
Berg IA, Ramos-Vera WH, Petri A, Huber H, Fuchs G., Microbiology (Reading, Engl.) 156(Pt 1), 2009
PMID: 19850614
Proteomic evaluation and validation of cathepsin D regulated proteins in macrophages exposed to Streptococcus pneumoniae.
Bewley MA, Pham TK, Marriott HM, Noirel J, Chu HP, Ow SY, Ryazanov AG, Read RC, Whyte MK, Chain B, Wright PC, Dockrell DH., Mol. Cell Proteomics 10(6), 2011
PMID: 21474794
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation.
Brasen C, Esser D, Rauch B, Siebers B., Microbiol. Mol. Biol. Rev. 78(1), 2014
PMID: 24600042
Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature
Brock, Arch Für Mikrobiol 84(), 1972
Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment.
Brouns SJ, Walther J, Snijders AP, van de Werken HJ, Willemen HL, Worm P, de Vos MG, Andersson A, Lundgren M, Mazon HF, van den Heuvel RH, Nilsson P, Salmon L, de Vos WM, Wright PC, Bernander R, van der Oost J., J. Biol. Chem. 281(37), 2006
PMID: 16849334
Crystal structure and biochemical properties of the D-arabinose dehydrogenase from Sulfolobus solfataricus.
Brouns SJ, Turnbull AP, Willemen HL, Akerboom J, van der Oost J., J. Mol. Biol. 371(5), 2007
PMID: 17610898
An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates.
Buchanan CL, Connaris H, Danson MJ, Reeve CD, Hough DW., Biochem. J. 343 Pt 3(), 1999
PMID: 10527934
The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases.
Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24225315
BRENDA in 2015: exciting developments in its 25th year of existence.
Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M, Xiao M, Sensen CW, Schomburg D., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25378310
The gene of an archaeal alpha-L-fucosidase is expressed by translational frameshifting.
Cobucci-Ponzano B, Conte F, Benelli D, Londei P, Flagiello A, Monti M, Pucci P, Rossi M, Moracci M., Nucleic Acids Res. 34(15), 2006
PMID: 16920738
The molecular characterization of a novel GH38 α-mannosidase from the crenarchaeon Sulfolobus solfataricus revealed its ability in de-mannosylating glycoproteins.
Cobucci-Ponzano B, Conte F, Strazzulli A, Capasso C, Fiume I, Pocsfalvi G, Rossi M, Moracci M., Biochimie 92(12), 2010
PMID: 20696204
Structure of a fucose transporter in an outward-open conformation.
Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H, Wang J, Yan N., Nature 467(7316), 2010
PMID: 20877283
Stoichiometric growth model for riboflavin-producing Bacillus subtilis.
Dauner M, Sauer U., Biotechnol. Bioeng. 76(2), 2001
PMID: 11505383
Structural basis for a bispecific NADP+ and CoA binding site in an archaeal malonyl-coenzyme A reductase.
Demmer U, Warkentin E, Srivastava A, Kockelkorn D, Potter M, Marx A, Fuchs G, Ermler U., J. Biol. Chem. 288(9), 2013
PMID: 23325803
A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography
Den, J Chromatogr a 11(), 1963
Complex lipids of Caldariella acidophila, a thermoacidophile archaebacterium
Rosa, Phytochemistry 19(), 1980
Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus.
De Rosa M, Gambacorta A, Nicolaus B, Giardina P, Poerio E, Buonocore V., Biochem. J. 224(2), 1984
PMID: 6440533
Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
Dudoit, Stat Sin 12(), 2002
The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme.
Dym O, Pratt EA, Ho C, Eisenberg D., Proc. Natl. Acad. Sci. U.S.A. 97(17), 2000
PMID: 10944213
Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters.
Elferink MG, Albers SV, Konings WN, Driessen AJ., Mol. Microbiol. 39(6), 2001
PMID: 11260467
Unraveling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus.
Esser D, Kouril T, Talfournier F, Polkowska J, Schrader T, Brasen C, Siebers B., Extremophiles 17(2), 2013
PMID: 23296511
Labeling and enzyme studies of the central carbon metabolism in Metallosphaera sedula.
Estelmann S, Hugler M, Eisenreich W, Werner K, Berg IA, Ramos-Vera WH, Say RF, Kockelkorn D, Gad'on N, Fuchs G., J. Bacteriol. 193(5), 2010
PMID: 21169486
Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri
Feist, Mol Syst Biol 2(), 2006
Biosynthesis of calditol, the cyclopentanoid containing moiety of the membrane lipids of the archaeon Sulfolobus solfataricus
Gambacorta, Tetrahedron Lett 43(), 2002
The metabolism of L-fucose. II. The enzymatic cleavage of L-fuculose 1-phosphate.
GHALAMBOR MA, HEATH EC., J. Biol. Chem. 237(), 1962
PMID: 13898172
Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus.
Giardina P, de Biasi MG, de Rosa M, Gambacorta A, Buonocore V., Biochem. J. 239(3), 1986
PMID: 3827812
Enzymatic conversion of L-fucose to L-fuculose.
GREEN M, COHEN SS., J. Biol. Chem. 219(2), 1956
PMID: 13319278
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis.
Hiller K, Hangebrauk J, Jager C, Spura J, Schreiber K, Schomburg D., Anal. Chem. 81(9), 2009
PMID: 19358599
The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models.
Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J; SBML Forum., Bioinformatics 19(4), 2003
PMID: 12611808
Bacterial glycogen and plant starch biosynthesis
Iglesias, Biochem Educ 20(), 1992
The thermophilic archaeon Sulfolobus solfataricus is able to grow on phenol.
Izzo V, Notomista E, Picardi A, Pennacchio F, Di Donato A., Res. Microbiol. 156(5-6), 2005
PMID: 15921893
Identification of a new endogenous metabolite and the characterization of its protein interactions through an immobilization approach.
Kalisiak J, Trauger SA, Kalisiak E, Morita H, Fokin VV, Adams MW, Sharpless KB, Siuzdak G., J. Am. Chem. Soc. 131(1), 2009
PMID: 19055353
Data, information, knowledge and principle: back to metabolism in KEGG.
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24214961
Advances in flux balance analysis.
Kauffman KJ, Prakash P, Edwards JS., Curr. Opin. Biotechnol. 14(5), 2003
PMID: 14580578
Catalytic promiscuity in dihydroxy-acid dehydratase from the thermoacidophilic archaeon Sulfolobus solfataricus
Kim, J Biochem (Tokyo) 139(), 2006
Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations.
Koga Y, Morii H., Microbiol. Mol. Biol. Rev. 71(1), 2007
PMID: 17347520
Biochemical and biophysical characterization of succinate: Quinone reductase from Thermus thermophilus
Kolaj-Robin, Biochim Biophys Acta BBA - Bioenerg 1807(), 2011
Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus
König, Arch Microbiol 132(), 1982
GMD@CSB.DB: the Golm Metabolome Database.
Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D., Bioinformatics 21(8), 2004
PMID: 15613389
A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway.
Kouril T, Zaparty M, Marrero J, Brinkmann H, Siebers B., Arch. Microbiol. 190(3), 2008
PMID: 18483808
Use of ranks in one-criterion variance analysis
Kruskal, J Am Stat Assoc 47(), 1952
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
BKM-react, an integrated biochemical reaction database.
Lang M, Stelzer M, Schomburg D., BMC Biochem. 12(), 2011
PMID: 21824409
An acyl-coenzyme A dehydrogenase assay utilizing the ferricenium ion.
Lehman TC, Hale DE, Bhala A, Thorpe C., Anal. Biochem. 186(2), 1990
PMID: 2363500
Glycolate oxidoreductase in Escherichia coli
Lord, Biochim Biophys Acta BBA - Bioenerg 267(), 1972
Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus.
Lubelska JM, Jonuscheit M, Schleper C, Albers SV, Driessen AJ., Extremophiles 10(5), 2006
PMID: 16604273
Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius
Maruta, Biochim Biophys Acta BBA - Gen Subj 1291(), 1996
Mapping and quantifying mammalian transcriptomes by RNA-Seq.
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B., Nat. Methods 5(7), 2008
PMID: 18516045

Neidhardt, 1990
Adaptation of Sulfolobus solfataricus on minimal media
Nicolaus, Biotechnol Lett 13(), 1991
Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius.
Nunn CE, Johnsen U, Schonheit P, Fuhrer T, Sauer U, Hough DW, Danson MJ., J. Biol. Chem. 285(44), 2010
PMID: 20736170
Anaerobic metabolism of the L-rhamnose fermentation product 1,2-propanediol in Salmonella typhimurium.
Obradors N, Badia J, Baldoma L, Aguilar J., J. Bacteriol. 170(5), 1988
PMID: 3283105
The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis.
Orita I, Sato T, Yurimoto H, Kato N, Atomi H, Imanaka T, Sakai Y., J. Bacteriol. 188(13), 2006
PMID: 16788179
iTRAQ underestimation in simple and complex mixtures: "the good, the bad and the ugly".
Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC., J. Proteome Res. 8(11), 2009
PMID: 19754192
Balancing robust quantification and identification for iTRAQ: application of UHR-ToF MS.
Ow SY, Noirel J, Salim M, Evans C, Watson R, Wright PC., Proteomics 10(11), 2010
PMID: 20352625
Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by Clostridium phytofermentans.
Petit E, LaTouf WG, Coppi MV, Warnick TA, Currie D, Romashko I, Deshpande S, Haas K, Alvelo-Maurosa JG, Wardman C, Schnell DJ, Leschine SB, Blanchard JL., PLoS ONE 8(1), 2013
PMID: 23382892
Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics.
Peyraud R, Kiefer P, Christen P, Massou S, Portais JC, Vorholt JA., Proc. Natl. Acad. Sci. U.S.A. 106(12), 2009
PMID: 19261854
A quantitative proteomic analysis of biofilm adaptation by the periodontal pathogen Tannerella forsythia.
Pham TK, Roy S, Noirel J, Douglas I, Wright PC, Stafford GP., Proteomics 10(17), 2010
PMID: 20806225
Genome-scale models of microbial cells: evaluating the consequences of constraints.
Price ND, Reed JL, Palsson BO., Nat. Rev. Microbiol. 2(11), 2004
PMID: 15494745
EnzymeDetector: an integrated enzyme function prediction tool and database.
Quester S, Schomburg D., BMC Bioinformatics 12(), 2011
PMID: 21943292
A metabolite-centric view on flux distributions in genome-scale metabolic models.
Riemer SA, Rex R, Schomburg D., BMC Syst Biol 7(), 2013
PMID: 23587327
The complete genome of the crenarchaeon Sulfolobus solfataricus P2.
She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J., Proc. Natl. Acad. Sci. U.S.A. 98(14), 2001
PMID: 11427726
The HHpred interactive server for protein homology detection and structure prediction.
Soding J, Biegert A, Lupas AN., Nucleic Acids Res. 33(Web Server issue), 2005
PMID: 15980461
Highly sensitive feature detection for high resolution LC/MS.
Tautenhahn R, Bottcher C, Neumann S., BMC Bioinformatics 9(), 2008
PMID: 19040729
Evidence for an operative glyoxylate cycle in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius.
Uhrigshardt H, Walden M, John H, Petersen A, Anemuller S., FEBS Lett. 513(2-3), 2002
PMID: 11904155
Pathways of arginine biosynthesis in extreme thermophilic archaeo- and eubacteria
Casteele, J Gen Microbiol 136(), 1990
L-Fucose: Occurrence, physiological role, chemical, enzymatic and microbial synthesis
Vanhooren, J Chem Technol Biotechnol 74(), 1999
Metabolic flux balancing: Basic concepts, scientific and practical use
Varma, Bio/Technology 12(), 1994
Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius.
Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J, Albers SV., Front Microbiol 3(), 2012
PMID: 22707949
Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus.
Worthington P, Hoang V, Perez-Pomares F, Blum P., J. Bacteriol. 185(2), 2003
PMID: 12511494
The possibility of involvement of “cyclase” enzyme of the calditol carbocycle with broad substrate specificity in Sulfolobus acidcaldarius, a typical thermophilic archaea
Yamauchi, Chem Lett 35(), 2006
Evolution of enzymatic activities in the enolase superfamily: L-fuconate dehydratase from Xanthomonas campestris
Yew, Biochemistry (Mosc) 45(), 2006
Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus
Zaparty, Extrem Life Extreme Cond 14(), 2010
Adaptation of Phaeobacter inhibens DSM 17395 to growth with complex nutrients.
Zech H, Hensler M, Koßmehl S, Druppel K, Wohlbrand L, Trautwein K, Hulsch R, Maschmann U, Colby T, Schmidt J, Reinhardt R, Schmidt-Hohagen K, Schomburg D, Rabus R., Proteomics 13(18-19), 2013
PMID: 23613352
The Sulfolobus-“Caldariella” group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases
Zillig, Arch Microbiol 125(), 1980
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27611014
PubMed | Europe PMC

Suchen in

Google Scholar