GAP promoter-based fed-batch production of highly bioactive core streptavidin by Pichia pastoris

Müller J, Bruhn S, Flaschel E, Friehs K, Risse JM (2016)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Streptavidin is a homotetrameric protein binding the vitamin biotin and peptide analogues with an extremely high affinity, which leads to a large variety of applications. The biotin-auxotrophic yeast Pichia pastoris has recently been identified as a suitable host for the expression of the streptavidin gene, allowing both high product concentrations and productivities. However, so far only methanol-based expression systems have been applied, bringing about increased oxygen demand, strong heat evolution and high requirements for process safety, causing increased cost. Moreover, common methanol-based processes lead to large proportions of biotin-blocked binding sites of streptavidin due to biotin-supplemented media. Targeting these problems, this paper provides strategies for the methanol-free production of highly bioactive core streptavidin by P. pastoris under control of the constitutive GAP promoter. Complex were superior to synthetic production media regarding the proportion of biotin-blocked streptavidin. The optimized, easily scalable fed-batch process led to a tetrameric product concentration of up to 4.16 +/- 0.11 mu M of biotin-free streptavidin and a productivity of 57.8 nM h(-1) based on constant glucose feeding and a successive shift of temperature and pH throughout the cultivation, surpassing the concentration in un-optimized conditions by a factor of 3.4. Parameter estimation indicates that the optimized conditions caused a strongly increased accumulation of product at diminishing specific growth rates ( approximate to D<0.01 h(-1)), supporting the strategy of feeding. (c) 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:855-864, 2016
continuous shift of temperature and pH; biotin-free streptavidin; bioreactor fed-batch process optimization; proteolysis; parameter; estimation
Page URI


Müller J, Bruhn S, Flaschel E, Friehs K, Risse JM. GAP promoter-based fed-batch production of highly bioactive core streptavidin by Pichia pastoris. BIOTECHNOLOGY PROGRESS. 2016;32(4):855-864.
Müller, J., Bruhn, S., Flaschel, E., Friehs, K., & Risse, J. M. (2016). GAP promoter-based fed-batch production of highly bioactive core streptavidin by Pichia pastoris. BIOTECHNOLOGY PROGRESS, 32(4), 855-864. doi:10.1002/btpr.2283
Müller, J., Bruhn, S., Flaschel, E., Friehs, K., and Risse, J. M. (2016). GAP promoter-based fed-batch production of highly bioactive core streptavidin by Pichia pastoris. BIOTECHNOLOGY PROGRESS 32, 855-864.
Müller, J., et al., 2016. GAP promoter-based fed-batch production of highly bioactive core streptavidin by Pichia pastoris. BIOTECHNOLOGY PROGRESS, 32(4), p 855-864.
J. Müller, et al., “GAP promoter-based fed-batch production of highly bioactive core streptavidin by Pichia pastoris”, BIOTECHNOLOGY PROGRESS, vol. 32, 2016, pp. 855-864.
Müller, J., Bruhn, S., Flaschel, E., Friehs, K., Risse, J.M.: GAP promoter-based fed-batch production of highly bioactive core streptavidin by Pichia pastoris. BIOTECHNOLOGY PROGRESS. 32, 855-864 (2016).
Müller, Jakob, Bruhn, Simon, Flaschel, Erwin, Friehs, Karl, and Risse, Joe Max. “GAP promoter-based fed-batch production of highly bioactive core streptavidin by Pichia pastoris”. BIOTECHNOLOGY PROGRESS 32.4 (2016): 855-864.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

65 References

Daten bereitgestellt von Europe PubMed Central.

CHAIET L, WOLF FJ., Arch. Biochem. Biophys. 106(), 1964
PMID: 14217155
STAPLEY EO, MATA JM, MILLER IM, DEMNY TC, WOODRUFF HB., Antimicrob Agents Chemother (Bethesda) 161(), 1963
PMID: 14274896
Application of avidin-biotin technology to affinity-based separations.
Bayer EA, Wilchek M., J. Chromatogr. 510(), 1990
PMID: 2205618
Extremely high thermal stability of streptavidin and avidin upon biotin binding.
Gonzalez M, Argarana CE, Fidelio GD., Biomol. Eng. 16(1-4), 1999
PMID: 10796986
Applications of a peptide ligand for streptavidin: the Strep-tag.
Skerra A, Schmidt TG., Biomol. Eng. 16(1-4), 1999
PMID: 10796988
Close similarity among streptavidin-like, biotin-binding proteins from Streptomyces.
Bayer EA, Kulik T, Adar R, Wilchek M., Biochim. Biophys. Acta 1263(1), 1995
PMID: 7632734
Novel avidin-like protein from a root nodule symbiotic bacterium, Bradyrhizobium japonicum.
Nordlund HR, Hytonen VP, Laitinen OH, Kulomaa MS., J. Biol. Chem. 280(14), 2005
PMID: 15695809
Characterization and crystallization of core streptavidin.
Pahler A, Hendrickson WA, Kolks MA, Argarana CE, Cantor CR., J. Biol. Chem. 262(29), 1987
PMID: 3654648
Postsecretory modifications of streptavidin.
Bayer EA, Ben-Hur H, Hiller Y, Wilchek M., Biochem. J. 259(2), 1989
PMID: 2719654
Expression of a cloned streptavidin gene in Escherichia coli.
Sano T, Cantor CR., Proc. Natl. Acad. Sci. U.S.A. 87(1), 1990
PMID: 2404273
Production of a soluble and functional recombinant streptavidin in Escherichia coli.
Gallizia A, de Lalla C, Nardone E, Santambrogio P, Brandazza A, Sidoli A, Arosio P., Protein Expr. Purif. 14(2), 1998
PMID: 9790881
Gewinnung von Streptavidin mittels Streptomyces avidinii bzw. Escherichia coli
Risse, Chemie Ingenieur Technik. 78(), 2006
Factors that influence the extracellular expression of streptavidin in Escherichia coli using a bacteriocin release protein.
Miksch G, Ryu S, Risse JM, Flaschel E., Appl. Microbiol. Biotechnol. 81(2), 2008
PMID: 18795286
Constitutive production and efficient secretion of soluble full-length streptavidin by an Escherichia coli 'leaky mutant'.
Muller JM, Wetzel D, Flaschel E, Friehs K, Risse JM., J. Biotechnol. 221(), 2016
PMID: 26820322
Secretion of streptavidin from Bacillus subtilis.
Nagarajan V, Ramaley R, Albertson H, Chen M., Appl. Environ. Microbiol. 59(11), 1993
PMID: 8285693
Secretory production and purification of functional full-length streptavidin from Bacillus subtilis.
Wu SC, Hassan Qureshi M, Wong SL., Protein Expr. Purif. 24(3), 2002
PMID: 11922750
Metabolic functions of biotin I. The role of biotin in bicarbonate utilization by Lactobacillus arabinosis studied with 14C
Lardy, J Biol Chem. (), 1949
[On the biochemical function of biotin. II. Purification and mode of action of beta-methyl-crotonyl-carboxylase.]
PMID: 14467590
Expression and purification of a recombinant avidin with a lowered isoelectric point in Pichia pastoris.
Zocchi A, Jobe AM, Neuhaus JM, Ward TR., Protein Expr. Purif. 32(2), 2003
PMID: 14965761
Cloning and expression of a functional core streptavidin in Pichia pastoris: strategies to increase yield.
Casteluber MC, Damasceno LM, da Silveira WB, Diniz RH, Passos FJ, Passos FM., Biotechnol. Prog. 28(6), 2012
PMID: 22915495
High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis.
Nogueira ES, Schleier T, Durrenberger M, Ballmer-Hofer K, Ward TR, Jaussi R., Protein Expr. Purif. 93(), 2013
PMID: 24184946
Recent advances on the GAP promoter derived expression system of Pichia pastoris.
Zhang AL, Luo JX, Zhang TY, Pan YW, Tan YH, Fu CY, Tu FZ., Mol. Biol. Rep. 36(6), 2008
PMID: 18781398
Thermochemical Investigations of the water-ethanol and water-methanol solvent systems. I. Heats of mixing, heats of solution, and heats of ionization of water
Bertrand, J Phys Chem. 70(), 1966
A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut⁺/pAOX1-lacZ strain.
Niu H, Jost L, Pirlot N, Sassi H, Daukandt M, Rodriguez C, Fickers P., Microb. Cell Fact. 12(), 2013
PMID: 23565774
Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter.
Zhao W, Wang J, Deng R, Wang X., J. Ind. Microbiol. Biotechnol. 35(3), 2007
PMID: 18087738
Engineering of biotin-prototrophy in Pichia pastoris for robust production processes.
Gasser B, Dragosits M, Mattanovich D., Metab. Eng. 12(6), 2010
PMID: 20688186
Effect of biotin deficiency on the synthesis of nucleic acids and protein by Saccharomyces cerevisiae
Ahmad, Microbiology. 24(), 1960
Alteration in the amino acid content of yeast during growth under various nutritional conditions.
Moat AG, Ahmad F, Alexander JK, Barnes IJ., J. Bacteriol. 98(2), 1969
PMID: 5784213
Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters
Çalık, Biochem Eng J. 95(), 2015
Constitutive expression of Yarrowia lipolytica lipase LIP2 in Pichia pastoris using GAP as promoter.
Wang X, Sun Y, Ke F, Zhao H, Liu T, Xu L, Liu Y, Yan Y., Appl. Biochem. Biotechnol. 166(5), 2012
PMID: 22246727
Screening of alternative carbon sources for recombinant protein production in Pichia pastoris
Potvin, Int J Chem React Eng. 14(), 2016
Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production.
Ahmad M, Hirz M, Pichler H, Schwab H., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24743983
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495

Sambrook, 2000
Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris.
Lin-Cereghino J, Wong WW, Xiong S, Giang W, Luong LT, Vu J, Johnson SD, Lin-Cereghino GP., BioTechniques 38(1), 2005
PMID: 15679083

Cregg, 2007
Rapid estimation of avidin and streptavidin by fluorescence quenching or fluorescence polarization.
Kada G, Kaiser K, Falk H, Gruber HJ., Biochim. Biophys. Acta 1427(1), 1999
PMID: 10082986
Model-based development of an assay for the rapid detection of biotin-blocked binding sites of streptavidin
Müller, Eng Life Sci. 15(), 2015

Baud, 1993
A kinetic study of the lactic acid fermentation. Batch process at controlled pH
Luedeking, J Biochem Microbiol. 1(), 1959


Invitrogen, 2002
Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems
Bandyopadhyay, Biotechnol Bioeng. 9(), 1967
Engineering of Pichia pastoris for improved production of antibody fragments.
Gasser B, Maurer M, Gach J, Kunert R, Mattanovich D., Biotechnol. Bioeng. 94(2), 2006
PMID: 16570317
Optimisation of culture conditions with respect to biotin requirement for the production of recombinant avidin in Pichia pastoris.
Jungo C, Urfer J, Zocchi A, Marison I, von Stockar U., J. Biotechnol. 127(4), 2006
PMID: 16949696
Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein
Jahic, Bioprocess Biosyst Eng. 24(), 2002

Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures.
Jahic M, Wallberg F, Bollok M, Garcia P, Enfors SO., Microb. Cell Fact. 2(1), 2003
PMID: 12871597
Heterologous protein production using the Pichia pastoris expression system.
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM., Yeast 22(4), 2005
PMID: 15704221
Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins.
Baumann K, Maurer M, Dragosits M, Cos O, Ferrer P, Mattanovich D., Biotechnol. Bioeng. 100(1), 2008
PMID: 18078287
Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris.
Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, Wierschke JD, Subramaniam A, Birkenberger LA., Gene 190(1), 1997
PMID: 9185849
GAP promoter library for fine-tuning of gene expression in Pichia pastoris.
Qin X, Qian J, Yao G, Zhuang Y, Zhang S, Chu J., Appl. Environ. Microbiol. 77(11), 2011
PMID: 21498769


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 27090387
PubMed | Europe PMC

Suchen in

Google Scholar