A de novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny

Pucker B, Holtgräwe D, Rosleff Sörensen T, Stracke R, Viehöver P, Weisshaar B (2016)
PLoS One 11(10): e0164321.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 2.06 MB
Abstract / Bemerkung
Arabidopsis thaliana is the most important model organism for fundamental plant biology. The genome diversity of different accessions of this species has been intensively studied, for example in the 1001 genome project which led to the identification of many small nucleotide polymorphisms (SNPs) and small insertions and deletions (InDels). In addition, presence/absence variation (PAV), copy number variation (CNV) and mobile genetic elements contribute to genomic differences between A. thaliana accessions. To address larger genome rearrangements between the A. thaliana reference accession Columbia-0 (Col-0) and another accession of about average distance to Col-0, we created a de novo next generation sequencing (NGS)-based assembly from the accession Niederzenz-1 (Nd-1). The result was evaluated with respect to assembly strategy and synteny to Col-0. We provide a high quality genome sequence of the A. thaliana accession (Nd-1, LXSY01000000). The assembly displays an N50 of 0.590 Mbp and covers 99% of the Col-0 reference sequence. Scaffolds from the de novo assembly were positioned on the basis of sequence similarity to the reference. Errors in this automatic scaffold anchoring were manually corrected based on analyzing reciprocal best BLAST hits (RBHs) of genes. Comparison of the final Nd-1 assembly to the reference revealed duplications and deletions (PAV). We identified 826 insertions and 746 deletions in Nd-1. Randomly selected candidates of PAV were experimentally validated. Our Nd-1 de novo assembly allowed reliable identification of larger genic and intergenic variants, which was difficult or error-prone by short read mapping approaches alone. While overall sequence similarity as well as synteny is very high, we detected short and larger (affecting more than 100 bp) differences between Col-0 and Nd-1 based on bi-directional comparisons. The de novo assembly provided here and additional assemblies that will certainly be published in the future will allow to describe the pan-genome of A. thaliana.
PLoS One
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Pucker B, Holtgräwe D, Rosleff Sörensen T, Stracke R, Viehöver P, Weisshaar B. A de novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny. PLoS One. 2016;11(10): e0164321.
Pucker, B., Holtgräwe, D., Rosleff Sörensen, T., Stracke, R., Viehöver, P., & Weisshaar, B. (2016). A de novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny. PLoS One, 11(10), e0164321. doi:10.1371/journal.pone.0164321
Pucker, B., Holtgräwe, D., Rosleff Sörensen, T., Stracke, R., Viehöver, P., and Weisshaar, B. (2016). A de novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny. PLoS One 11:e0164321.
Pucker, B., et al., 2016. A de novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny. PLoS One, 11(10): e0164321.
B. Pucker, et al., “A de novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny”, PLoS One, vol. 11, 2016, : e0164321.
Pucker, B., Holtgräwe, D., Rosleff Sörensen, T., Stracke, R., Viehöver, P., Weisshaar, B.: A de novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny. PLoS One. 11, : e0164321 (2016).
Pucker, Boas, Holtgräwe, Daniela, Rosleff Sörensen, Thomas, Stracke, Ralf, Viehöver, Prisca, and Weisshaar, Bernd. “A de novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny”. PLoS One 11.10 (2016): e0164321.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A chromosome-level sequence assembly reveals the structure of the Arabidopsis thaliana Nd-1 genome and its gene set.
Pucker B, Holtgräwe D, Stadermann KB, Frey K, Huettel B, Reinhardt R, Weisshaar B., PLoS One 14(5), 2019
PMID: 31112551
High Quality de Novo Transcriptome Assembly of Croton tiglium.
Haak M, Vinke S, Keller W, Droste J, Rückert C, Kalinowski J, Pucker B., Front Mol Biosci 5(), 2018
PMID: 30027092
Assessing genome assembly quality using the LTR Assembly Index (LAI).
Ou S, Chen J, Jiang N., Nucleic Acids Res 46(21), 2018
PMID: 30107434

89 References

Daten bereitgestellt von Europe PubMed Central.

Arabidopsis Thaliana (L.) Heynh. als Objekt für genetische und entwicklungsphysiologische Untersuchungen
The development of Arabidopsis as a model plant.
Koornneef M, Meinke D., Plant J. 61(6), 2010
PMID: 20409266
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.
Arabidopsis Genome Initiative., Nature 408(6814), 2000
PMID: 11130711
The size and sequence organization of the centromeric region of arabidopsis thaliana chromosome 5.
Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H., DNA Res. 7(6), 2000
PMID: 11214966
The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4.
Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H., DNA Res. 8(6), 2001
PMID: 11853315
The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools.
Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22140109
The Arabidopsis information resource: Making and mining the "gold standard" annotated reference plant genome.
Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E., Genesis 53(8), 2015
PMID: 26201819
Araport: the Arabidopsis information portal.
Krishnakumar V, Hanlon MR, Contrino S, Ferlanti ES, Karamycheva S, Kim M, Rosen BD, Cheng CY, Moreira W, Mock SA, Stubbs J, Sullivan JM, Krampis K, Miller JR, Micklem G, Vaughn M, Town CD., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25414324
Long-read, whole-genome shotgun sequence data for five model organisms.
Kim KE, Peluso P, Babayan P, Yeadon PJ, Yu C, Fisher WW, Chin CS, Rapicavoli NA, Rank DR, Li J, Catcheside DE, Celniker SE, Phillippy AM, Bergman CM, Landolin JM., Sci Data 1(), 2014
PMID: 25977796
Reference-guided assembly of four diverse Arabidopsis thaliana genomes.
Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X, Lanz C, Smith LM, Cao J, Fitz J, Warthmann N, Henz SR, Huson DH, Weigel D., Proc. Natl. Acad. Sci. U.S.A. 108(25), 2011
PMID: 21646520
Whole-genome sequencing of multiple Arabidopsis thaliana populations.
Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Muller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D., Nat. Genet. 43(10), 2011
PMID: 21874002
The 1001 genomes project for Arabidopsis thaliana.
Weigel D, Mott R., Genome Biol. 10(5), 2009
PMID: 19519932
De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits.
Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS, Zuo Q, Shi XH, Li YF, Zhang WK, Hu Y, Kong G, Hong HL, Tan B, Song J, Liu ZX, Wang Y, Ruan H, Yeung CK, Liu J, Wang H, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li R, Qiu LJ., Nat. Biotechnol. 32(10), 2014
PMID: 25218520
Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden.
Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, Zhang Q, Vilhjalmsson BJ, Korte A, Nizhynska V, Voronin V, Korte P, Sedman L, Mandakova T, Lysak MA, Seren U, Hellmann I, Nordborg M., Nat. Genet. 45(8), 2013
PMID: 23793030
SHOREmap: simultaneous mapping and mutation identification by deep sequencing.
Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen JE, Weigel D, Andersen SU., Nat. Methods 6(8), 2009
PMID: 19644454
Population Genomics for Understanding Adaptation in Wild Plant Species.
Weigel D, Nordborg M., Annu. Rev. Genet. 49(), 2015
PMID: 26436459
Genome size variation among accessions of Arabidopsis thaliana.
Schmuths H, Meister A, Horres R, Bachmann K., Ann. Bot. 93(3), 2004
PMID: 14724121
Maize HapMap2 identifies extant variation from a genome in flux.
Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai J, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhajarvi T, Rong T, Sekhon RS, Sun Q, Tenaillon MI, Tian F, Wang J, Xu X, Zhang Z, Kaeppler SM, Ross-Ibarra J, McMullen MD, Buckler ES, Zhang G, Xu Y, Ware D., Nat. Genet. 44(7), 2012
PMID: 22660545
Genome structural variation discovery and genotyping.
Alkan C, Coe BP, Eichler EE., Nat. Rev. Genet. 12(5), 2011
PMID: 21358748
Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.).
Thudi M, Khan AW, Kumar V, Gaur PM, Katta K, Garg V, Roorkiwal M, Samineni S, Varshney RK., BMC Plant Biol. 16 Suppl 1(), 2016
PMID: 26822060
Structural variation and genome complexity: is dispensable really dispensable?
Marroni F, Pinosio S, Morgante M., Curr. Opin. Plant Biol. 18(), 2014
PMID: 24548794
Mechanisms of change in gene copy number.
Hastings PJ, Lupski JR, Rosenberg SM, Ira G., Nat. Rev. Genet. 10(8), 2009
PMID: 19597530
Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome.
Munoz-Amatriain M, Eichten SR, Wicker T, Richmond TA, Mascher M, Steuernagel B, Scholz U, Ariyadasa R, Spannagl M, Nussbaumer T, Mayer KF, Taudien S, Platzer M, Jeddeloh JA, Springer NM, Muehlbauer GJ, Stein N., Genome Biol. 14(6), 2013
PMID: 23758725
Transposable elements, gene creation and genome rearrangement in flowering plants.
Bennetzen JL., Curr. Opin. Genet. Dev. 15(6), 2005
PMID: 16219458
Turning the clock back on ancient genome duplication.
Seoighe C., Curr. Opin. Genet. Dev. 13(6), 2003
PMID: 14638327
Polyploidy and genome evolution in plants.
Adams KL, Wendel JF., Curr. Opin. Plant Biol. 8(2), 2005
PMID: 15752992
Limitations of next-generation genome sequence assembly.
Alkan C, Sajjadian S, Eichler EE., Nat. Methods 8(1), 2010
PMID: 21102452
High-resolution genetic mapping of maize pan-genome sequence anchors.
Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang T, Li Y, Li Y, Semagn K, Zhang X, Hernandez AG, Mikel MA, Soifer I, Barad O, Buckler ES., Nat Commun 6(), 2015
PMID: 25881062
Alignment of Next-Generation Sequencing Reads.
Reinert K, Langmead B, Weese D, Evers DJ., Annu Rev Genomics Hum Genet 16(), 2015
PMID: 25939052
Sequencing of natural strains of Arabidopsis thaliana with short reads.
Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D., Genome Res. 18(12), 2008
PMID: 18818371
OrthoMCL: identification of ortholog groups for eukaryotic genomes.
Li L, Stoeckert CJ Jr, Roos DS., Genome Res. 13(9), 2003
PMID: 12952885
Choosing BLAST options for better detection of orthologs as reciprocal best hits.
Moreno-Hagelsieb G, Latimer K., Bioinformatics 24(3), 2007
PMID: 18042555
A genomic perspective on protein families.
Tatusov RL, Koonin EV, Lipman DJ., Science 278(5338), 1997
PMID: 9381173
The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements.
Altenhoff AM, Skunca N, Glover N, Train CM, Sueki A, Pilizota I, Gori K, Tomiczek B, Muller S, Redestig H, Gonnet GH, Dessimoz C., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25399418
Segregation of random amplified DNA markers in F1 progeny of conifers.
Carlson JE, Tulsieram LK, Glaubitz JC, Luk VWK, Kauffeldt C, Rutledge R., Theor. Appl. Genet. 83(2), 1991
PMID: IND92007625
SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome.
Stadermann KB, Weisshaar B, Holtgrawe D., BMC Bioinformatics 16(), 2015
PMID: 26377912
An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics.
Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B., Plant Mol. Biol. 53(1-2), 2003
PMID: 14756321
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
NxTrim: optimized trimming of Illumina mate pair reads.
O'Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ., Bioinformatics 31(12), 2015
PMID: 25661542
The MaSuRCA genome assembler.
Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA., Bioinformatics 29(21), 2013
PMID: 23990416
Scaffolding pre-assembled contigs using SSPACE.
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W., Bioinformatics 27(4), 2010
PMID: 21149342
Toward almost closed genomes with GapFiller.
Boetzer M, Pirovano W., Genome Biol. 13(6), 2012
PMID: 22731987
BLAT--the BLAST-like alignment tool.
Kent WJ., Genome Res. 12(4), 2002
PMID: 11932250
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Dissecting a hidden gene duplication: the Arabidopsis thaliana SEC10 locus.
Vukasinovic N, Cvrckova F, Elias M, Cole R, Fowler JE, Zarsky V, Synek L., PLoS ONE 9(4), 2014
PMID: 24728280
REAPR: a universal tool for genome assembly evaluation.
Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD., Genome Biol. 14(5), 2013
PMID: 23710727
Gene prediction with a hidden Markov model and a new intron submodel.
Stanke M, Waack S., Bioinformatics 19 Suppl 2(), 2003
PMID: 14534192
A novel hybrid gene prediction method employing protein multiple sequence alignments.
Keller O, Kollmar M, Stanke M, Waack S., Bioinformatics 27(6), 2011
PMID: 21216780
Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana.
Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B., Genome Res. 13(6A), 2003
PMID: 12799357
The Structural Features of Thousands of T-DNA Insertion Sites Are Consistent with a Double-Strand Break Repair-Based Insertion Mechanism.
Kleinboelting N, Huep G, Appelhagen I, Viehoever P, Li Y, Weisshaar B., Mol Plant 8(11), 2015
PMID: 26343971
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA., Genome Res. 20(9), 2010
PMID: 20644199
A framework for variation discovery and genotyping using next-generation DNA sequencing data.
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ., Nat. Genet. 43(5), 2011
PMID: 21478889
From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline.
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA., Curr Protoc Bioinformatics 43(), 2013
PMID: 25431634
A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.
Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM., Fly (Austin) 6(2), 2012
PMID: 22728672
A highly repeated DNA sequence in Arabidopsis thaliana
PlantSat: a specialized database for plant satellite repeats.
Macas J, Meszaros T, Nouzova M., Bioinformatics 18(1), 2002
PMID: 11836208
Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation.
Werner JD, Borevitz JO, Warthmann N, Trainer GT, Ecker JR, Chory J, Weigel D., Proc. Natl. Acad. Sci. U.S.A. 102(7), 2005
PMID: 15695584
Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana.
Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, Chen H, Frazer KA, Huson DH, Scholkopf B, Nordborg M, Ratsch G, Ecker JR, Weigel D., Science 317(5836), 2007
PMID: 17641193
Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure.
Round EK, Flowers SK, Richards EJ., Genome Res. 7(11), 1997
PMID: 9371740
Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro.
Yoda K, Ando S, Morishita S, Houmura K, Hashimoto K, Takeyasu K, Okazaki T., Proc. Natl. Acad. Sci. U.S.A. 97(13), 2000
PMID: 10840064
Conserved organization of centromeric chromatin in flies and humans.
Blower MD, Sullivan BA, Karpen GH., Dev. Cell 2(3), 2002
PMID: 11879637
The centromere region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences.
Richards EJ, Goodman HM, Ausubel FM., Nucleic Acids Res. 19(12), 1991
PMID: 1648204
Regulation of Pol I-transcribed 45S rDNA and Pol III-transcribed 5S rDNA in Arabidopsis.
Layat E, Saez-Vasquez J, Tourmente S., Plant Cell Physiol. 53(2), 2011
PMID: 22173098
Genome organization and function: a view from yeast and Arabidopsis.
Saez-Vasquez J, Gadal O., Mol Plant 3(4), 2010
PMID: 20601371
The centromere1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin.
Haupt W, Fischer TC, Winderl S, Fransz P, Torres-Ruiz RA., Plant J. 27(4), 2001
PMID: 11532174
Tedna: a transposable element de novo assembler.
Zytnicki M, Akhunov E, Quesneville H., Bioinformatics 30(18), 2014
PMID: 24894500
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.
VanBuren R, Bryant D, Edger PP, Tang H, Burgess D, Challabathula D, Spittle K, Hall R, Gu J, Lyons E, Freeling M, Bartels D, Ten Hallers B, Hastie A, Michael TP, Mockler TC., Nature 527(7579), 2015
PMID: 26560029
Genomic variants of genes associated with three horticultural traits in apple revealed by genome re-sequencing.
Zhang S, Chen W, Xin L, Gao Z, Hou Y, Yu X, Zhang Z, Qu S., Hortic Res 1(), 2014
PMID: 26504548
Heat-induced deamination of cytosine residues in deoxyribonucleic acid.
Lindahl T, Nyberg B., Biochemistry 13(16), 1974
PMID: 4601435
Mutagenic deamination of cytosine residues in DNA.
Duncan BK, Miller JH., Nature 287(5782), 1980
PMID: 6999365

The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana.
Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M., Science 327(5961), 2010
PMID: 20044577
Genetic variation in an individual human exome.
Ng PC, Levy S, Huang J, Stockwell TB, Walenz BP, Li K, Axelrod N, Busam DA, Strausberg RL, Venter JC., PLoS Genet. 4(8), 2008
PMID: 18704161
Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6.
Ishihara H, Tohge T, Viehover P, Fernie AR, Weisshaar B, Stracke R., J. Exp. Bot. 67(5), 2015
PMID: 26717955
Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum.
Deslandes L, Pileur F, Liaubet L, Camut S, Can C, Williams K, Holub E, Beynon J, Arlat M, Marco Y., Mol. Plant Microbe Interact. 11(7), 1998
PMID: 9650298
Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes.
Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y., Proc. Natl. Acad. Sci. U.S.A. 99(4), 2002
PMID: 11842188
Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly.
Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, Deshpande P, Cao H, Nagarajan N, Xiao M, Kwok PY., Nat. Biotechnol. 30(8), 2012
PMID: 22797562
Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome.
Hastie AR, Dong L, Smith A, Finklestein J, Lam ET, Huo N, Cao H, Kwok PY, Deal KR, Dvorak J, Luo MC, Gu Y, Xiao M., PLoS ONE 8(2), 2013
PMID: 23405223
Material in PUB:
Dissertation, die diesen PUB Eintrag enthält

Externes Material:
Dataset containing three files, namely contig and scaffold sequences (WB42_v2.fasta), an AGP file (WB42_v2.agp) to convert WB42_v2.fasta to a concatenated assembly version consisting of pseudochromosomes, and the result of a gene prediction performed with AUGUSTUS to describe Beta vulgaris spp. maritima protein coding genes, including genes which are not supported by mRNA evidence (WB42_v2.gff3).


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 27711162
PubMed | Europe PMC

Suchen in

Google Scholar