Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii

Lauersen KJ, Baier T, Wichmann J, Wördenweber R, Mussgnug JH, Hübner W, Huser T, Kruse O (2016)
Metabolic Engineering 38: 331-343.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.65 MB
Erscheinungsjahr
2016
Zeitschriftentitel
Metabolic Engineering
Band
38
Seite(n)
331-343
ISSN
1096-7176
Page URI
https://pub.uni-bielefeld.de/record/2904856

Zitieren

Lauersen KJ, Baier T, Wichmann J, et al. Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii. Metabolic Engineering. 2016;38:331-343.
Lauersen, K. J., Baier, T., Wichmann, J., Wördenweber, R., Mussgnug, J. H., Hübner, W., Huser, T., et al. (2016). Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii. Metabolic Engineering, 38, 331-343. doi:10.1016/j.ymben.2016.07.013
Lauersen, Kyle J., Baier, Thomas, Wichmann, Julian, Wördenweber, Robin, Mussgnug, Jan H., Hübner, Wolfgang, Huser, Thomas, and Kruse, Olaf. 2016. “Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii”. Metabolic Engineering 38: 331-343.
Lauersen, K. J., Baier, T., Wichmann, J., Wördenweber, R., Mussgnug, J. H., Hübner, W., Huser, T., and Kruse, O. (2016). Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii. Metabolic Engineering 38, 331-343.
Lauersen, K.J., et al., 2016. Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii. Metabolic Engineering, 38, p 331-343.
K.J. Lauersen, et al., “Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii”, Metabolic Engineering, vol. 38, 2016, pp. 331-343.
Lauersen, K.J., Baier, T., Wichmann, J., Wördenweber, R., Mussgnug, J.H., Hübner, W., Huser, T., Kruse, O.: Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii. Metabolic Engineering. 38, 331-343 (2016).
Lauersen, Kyle J., Baier, Thomas, Wichmann, Julian, Wördenweber, Robin, Mussgnug, Jan H., Hübner, Wolfgang, Huser, Thomas, and Kruse, Olaf. “Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii”. Metabolic Engineering 38 (2016): 331-343.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:39:59Z
MD5 Prüfsumme
0882de31ea50ed7840c0d526c1e6b486


8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production.
D'Adamo S, Schiano di Visconte G, Lowe G, Szaub-Newton J, Beacham T, Landels A, Allen MJ, Spicer A, Matthijs M., Plant Biotechnol J 17(1), 2019
PMID: 29754445
Enhancing heterologous expression in Chlamydomonas reinhardtii by transcript sequence optimization.
Weiner I, Atar S, Schweitzer S, Eilenberg H, Feldman Y, Avitan M, Blau M, Danon A, Tuller T, Yacoby I., Plant J 94(1), 2018
PMID: 29383789
Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum.
Henke NA, Wichmann J, Baier T, Frohwitter J, Lauersen KJ, Risse JM, Peters-Wendisch P, Kruse O, Wendisch VF., Genes (Basel) 9(4), 2018
PMID: 29673223
Modeling and Simulating the Aerobic Carbon Metabolism of a Green Microalga Using Petri Nets and New Concepts of VANESA.
Brinkrolf C, Henke NA, Ochel L, Pucker B, Kruse O, Lutter P., J Integr Bioinform 15(3), 2018
PMID: 30218605
Terpenoid Metabolic Engineering in Photosynthetic Microorganisms.
Vavitsas K, Fabris M, Vickers CE., Genes (Basel) 9(11), 2018
PMID: 30360565

47 References

Daten bereitgestellt von Europe PubMed Central.

Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes.
Albertsen L, Chen Y, Bach LS, Rattleff S, Maury J, Brix S, Nielsen J, Mortensen UH., Appl. Environ. Microbiol. 77(3), 2010
PMID: 21148687
Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.
Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS., Metab. Eng. 19(), 2013
PMID: 23727191
Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens.
Anterola A, Shanle E, Perroud PF, Quatrano R., Transgenic Res. 18(4), 2009
PMID: 19241134
Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde.
Atsumi S, Higashide W, Liao JC., Nat. Biotechnol. 27(12), 2009
PMID: 19915552
Can too many copies spoil the broth?
Aw R, Polizzi KM., Microb. Cell Fact. 12(), 2013
PMID: 24354594
The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption
Baker, Trends Food Sci. Technol. 15(), 2004
Dissecting the contributions of GC content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii.
Barahimipour R, Strenkert D, Neupert J, Schroda M, Merchant SS, Bock R., Plant J. 84(4), 2015
PMID: 26402748
Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene.
Beekwilder J, van Houwelingen A, Cankar K, van Dijk AD, de Jong RM, Stoopen G, Bouwmeester H, Achkar J, Sonke T, Bosch D., Plant Biotechnol. J. 12(2), 2013
PMID: 24112147

Buckingham, 1994
Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002.
Davies FK, Work VH, Beliaev AS, Posewitz MC., Front Bioeng Biotechnol 2(), 2014
PMID: 25152894
Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.
Degenhardt J, Kollner TG, Gershenzon J., Phytochemistry 70(15-16), 2009
PMID: 19793600
The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases.
Deguerry F, Pastore L, Wu S, Clark A, Chappell J, Schalk M., Arch. Biochem. Biophys. 454(2), 2006
PMID: 16970904
Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria
Gao, Energy Environ. Sci. 5(), 2012
The function of terpene natural products in the natural world.
Gershenzon J, Dudareva N., Nat. Chem. Biol. 3(7), 2007
PMID: 17576428
Genetically engineering cyanobacteria to convert CO₂, water, and light into the long-chain hydrocarbon farnesene.
Halfmann C, Gu L, Gibbons W, Zhou R., Appl. Microbiol. Biotechnol. 98(23), 2014
PMID: 25301585
Phaffia rhodozyma as an astaxanthin source in salmonid diets
Johnson, Aquaculture 20(), 1980
Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: overexpression of endogenous Δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG
Kaye, Algal Res. (), 2015
High-frequency nuclear transformation of Chlamydomonas reinhardtii.
Kindle KL., Proc. Natl. Acad. Sci. U.S.A. 87(3), 1990
PMID: 2105499
Biosynthesis of plant isoprenoids: perspectives for microbial engineering.
Kirby J, Keasling JD., Annu Rev Plant Biol 60(), 2009
PMID: 19575586
Enhancing terpene yield from sugars via novel routes to 1-deoxy-d-xylulose 5-phosphate
Kirby, Appl. Environ. Micro. 81(), 2014
Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes.
Lange BM, Rujan T, Martin W, Croteau R., Proc. Natl. Acad. Sci. U.S.A. 97(24), 2000
PMID: 11078528
Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii.
Lauersen KJ, Berger H, Mussgnug JH, Kruse O., J. Biotechnol. 167(2), 2012
PMID: 23099045
Investigating the dynamics of recombinant protein secretion from a microalgal host.
Lauersen KJ, Huber I, Wichmann J, Baier T, Leiter A, Gaukel V, Kartushin V, Rattenholl A, Steinweg C, von Riesen L, Posten C, Gudermann F, Lutkemeyer D, Mussgnug JH, Kruse O., J. Biotechnol. 215(), 2015
PMID: 25975624
Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit.
Lauersen KJ, Kruse O, Mussgnug JH., Appl. Microbiol. Biotechnol. 99(8), 2015
PMID: 25586579
Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii
Lauersen, Algal Res. 16(), 2016
Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae
Lohr, Plant Sci. (), 2012
Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron
Lumbreras, Plant J. 14(), 1998
Pathway engineering for functional isoprenoids.
Misawa N., Curr. Opin. Biotechnol. 22(5), 2011
PMID: 21310602
Generation of Chlamydomonas strains that efficiently express nuclear transgenes.
Neupert J, Karcher D, Bock R., Plant J. 57(6), 2008
PMID: 19036032
Artemisinin-based combination treatment of falciparum malaria.
Nosten F, White NJ., Am. J. Trop. Med. Hyg. 77(6 Suppl), 2007
PMID: 18165491
Cyanobacterial conversion of carbon dioxide to 2,3-butanediol.
Oliver JW, Machado IM, Yoneda H, Atsumi S., Proc. Natl. Acad. Sci. U.S.A. 110(4), 2013
PMID: 23297225
Sclareol production in the moss physcomitrella patens and observations on growth and terpenoid biosynthesis
Pan, Plant Biotechnol. Rep. 9(), 2015

AUTHOR UNKNOWN, 0
Identification and microbial production of a terpene-based advanced biofuel.
Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS., Nat Commun 2(), 2011
PMID: 21952217
Enhanced genetic tools for engineering multigene traits into green algae.
Rasala BA, Chao SS, Pier M, Barrera DJ, Mayfield SP., PLoS ONE 9(4), 2014
PMID: 24710110
Chlamydomonas reinhardtii as the photosynthetic yeast.
Rochaix JD., Annu. Rev. Genet. 29(), 1995
PMID: 8825474
Nutritional studies with Chlamydomonas reinhardi.
SAGER R, GRANICK S., Ann. N. Y. Acad. Sci. 56(5), 1953
PMID: 13139273
MITOTIC REPLICATION OF DEOXYRIBONUCLEIC ACID IN CHLAMYDOMONAS REINHARDI.
Sueoka N., Proc. Natl. Acad. Sci. U.S.A. 46(1), 1960
PMID: 16590601
Metabolic engineering of Escherichia coli for α-farnesene production.
Wang C, Yoon SH, Jang HJ, Chung YR, Kim JY, Choi ES, Kim SW., Metab. Eng. 13(6), 2011
PMID: 21907299
Cytochrome P450-enzymes involved in the biosynthesis of mono- and sesquiterpenes
Weitzel, Phytochem. Rev. (), 2013
Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and -santalene
Zhan, Front. Plant Sci. (), 2014
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27474353
PubMed | Europe PMC

Suchen in

Google Scholar