Efficiency and biotechnological aspects of biogas production from microalgal substrates

Klassen V, Blifernez-Klassen O, Wobbe L, Schlüter A, Kruse O, Mussgnug JH (2016)
Journal of Biotechnology 234: 7-26.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Photosynthetic organisms like plants and algae can harvest, convert, and store solar energy and thus represent readily available sources for renewable biofuels production on a domestic or industrial scale. Anaerobic digestion (AD) of the organic biomass yields biogas, containing methane and carbon dioxide as major constituents. Combustion of the biogas or purification of the energy-rich methane fraction can be applied to provide electricity or fuel. AD procedures have been applied for several decades with organic waste, animal products, or higher plants and more recently, utilization of photosynthetic algae as substrates has gained considerable research interest. To provide an overview of recent research efforts made to characterize the AD process of microalgal biomass, we present extended summaries of experimentally determined biochemical methane potentials (BMP), biomass pretreatment options and digestion strategies in this article. We conclude that cultivation options, biomass composition and time of harvesting, application of biomass pretreatment strategies, and parameters of the digestion process are all important factors, which can significantly affect the AD process efficiency. The transition from batch to continuous microalgal biomass digestion trials, accompanied by state-of-the-art analytical techniques, is now in demand to refine the assessments of the overall process feasibility.
Microalgae; biogas; biomethane; anaerobic digestion; biomass fermentation; microbial biocenosis
Journal of Biotechnology
Page URI


Klassen V, Blifernez-Klassen O, Wobbe L, Schlüter A, Kruse O, Mussgnug JH. Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology. 2016;234:7-26.
Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schlüter, A., Kruse, O., & Mussgnug, J. H. (2016). Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology, 234, 7-26. doi:10.1016/j.jbiotec.2016.07.015
Klassen, Viktor, Blifernez-Klassen, Olga, Wobbe, Lutz, Schlüter, Andreas, Kruse, Olaf, and Mussgnug, Jan H. 2016. “Efficiency and biotechnological aspects of biogas production from microalgal substrates”. Journal of Biotechnology 234: 7-26.
Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schlüter, A., Kruse, O., and Mussgnug, J. H. (2016). Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology 234, 7-26.
Klassen, V., et al., 2016. Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology, 234, p 7-26.
V. Klassen, et al., “Efficiency and biotechnological aspects of biogas production from microalgal substrates”, Journal of Biotechnology, vol. 234, 2016, pp. 7-26.
Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schlüter, A., Kruse, O., Mussgnug, J.H.: Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology. 234, 7-26 (2016).
Klassen, Viktor, Blifernez-Klassen, Olga, Wobbe, Lutz, Schlüter, Andreas, Kruse, Olaf, and Mussgnug, Jan H. “Efficiency and biotechnological aspects of biogas production from microalgal substrates”. Journal of Biotechnology 234 (2016): 7-26.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Efficient Anaerobic Digestion of Microalgae Biomass: Proteins as a Key Macromolecule.
Magdalena JA, Ballesteros M, González-Fernandez C., Molecules 23(5), 2018
PMID: 29734773
Highly efficient methane generation from untreated microalgae biomass.
Klassen V, Blifernez-Klassen O, Wibberg D, Winkler A, Kalinowski J, Posten C, Kruse O., Biotechnol Biofuels 10(), 2017
PMID: 28725266
Identification of Reference and Biomarker Proteins in Chlamydomonas reinhardtii Cultured under Different Stress Conditions.
Shi J, Huang T, Chai S, Guo Y, Wei J, Dou S, Li L, Liu G., Int J Mol Sci 18(8), 2017
PMID: 28829403

168 References

Daten bereitgestellt von Europe PubMed Central.

Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment.
Alzate ME, Munoz R, Rogalla F, Fdz-Polanco F, Perez-Elvira SI., Bioresour. Technol. 123(), 2012
PMID: 22940359
Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate.
Astals S, Nolla-Ardevol V, Mata-Alvarez J., Bioresour. Technol. 110(), 2012
PMID: 22341889
Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde.
Atsumi S, Higashide W, Liao JC., Nat. Biotechnol. 27(12), 2009
PMID: 19915552
Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production
Azman, Crit. Rev. Env. Sci. Technol. 45(), 2015

BMUB, 2010
Micro-algae as a source of protein.
Becker EW., Biotechnol. Adv. 25(2), 2006
PMID: 17196357
The cell wall of Scenedesmus quadricauda
Bisalputra, Am. J. Bot. (), 1963

Bischof, 2012
Identification of Monoraphidium contortum as a promising species for liquid biofuel production.
Bogen C, Klassen V, Wichmann J, La Russa M, Doebbe A, Grundmann M, Uronen P, Kruse O, Mussgnug JH., Bioresour. Technol. 133(), 2013
PMID: 23453981
Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs
Bohutskyi, 2013
Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant
Bremges, Gigascience 4(33), 2015
Nutritional properties of microalgae for mariculture
Brown, Aquaculture 151(), 1997
Comparison of sporopollenin-like algal resistant polymer from cell wall of Botryococcus, Scenedesmus and Lycopodium clavatum by GC pyrolysis
Burczyk, Phytochemistry 27(), 1988
Carotenoids in the outer cell-wall layer of Scenedesmus (Chlorophyceae).
Burczyk J, Szkawran H, Zontek I, Czygan FC., Planta 151(3), 1981
PMID: 24301850
Rapid method to screen and sort lipid accumulating microalgae.
Cabanelas ITD, Zwart MV, Kleinegris DMM, Barbosa MJ, Wijffels RH., Bioresour. Technol. 184(), 2014
PMID: 25453436
Pretreatment methods to improve sludge anaerobic degradability: a review.
Carrere H, Dumas C, Battimelli A, Batstone DJ, Delgenes JP, Steyer JP, Ferrer I., J. Hazard. Mater. 183(1-3), 2010
PMID: 20708333
Thermochemical treatment for algal fermentation
Chen, Environ. Int. 24(), 1998
Inhibition of anaerobic digestion process: a review.
Chen Y, Cheng JJ, Creamer KS., Bioresour. Technol. 99(10), 2007
PMID: 17399981
Methanés sinks and sources
Crutzen, Nature 350(), 1991
Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology
Daboussi, Nat. Commun. 5(), 2014
Haloalkaline bioconversions for methane production from microalgae grown on sunlight
Daelman, Trends Biotechnol. (), 2016
Revival of the biological sunlight-to-biogas energy conversion system.
De Schamphelaire L, Verstraete W., Biotechnol. Bioeng. 103(2), 2009
PMID: 19180645
Methanosarcina: the rediscovered methanogen for heavy duty biomethanation.
De Vrieze J, Hennebel T, Boon N, Verstraete W., Bioresour. Technol. 112(), 2012
PMID: 22418081
Aquatic phototrophs: efficient alternatives to land-based crops for biofuels.
Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC., Curr. Opin. Biotechnol. 19(3), 2008
PMID: 18539450
The comparative aspects of cell wall chemistry in the green algae (Chlorophyta).
Domozych DS, Stewart KD, Mattox KR., J. Mol. Evol. 15(1), 1980
PMID: 7365805
The structure and biochemistry of charophycean cell walls: I. Pectins of Penium margaritaceum.
Domozych DS, Serfis A, Kiemle SN, Gretz MR., Protoplasma 230(1-2), 2006
PMID: 17111095
The cell walls of green algae: a journey through evolution and diversity
Domozych, Front. Plant Sci. 3(), 2012

EU_Commission, 2016
Characterization of a Methanogenic Community within an Algal Fed Anaerobic Digester.
Ellis JT, Tramp C, Sims RC, Miller CD., ISRN Microbiol 2012(), 2012
PMID: 23724331

FNR, 2016
Genomic Foundation of Starch-to-Lipid Switch in Oleaginous Chlorella spp.
Fan J, Ning K, Zeng X, Luo Y, Wang D, Hu J, Li J, Xu H, Huang J, Wan M, Wang W, Zhang D, Shen G, Run C, Liao J, Fang L, Huang S, Jing X, Su X, Wang A, Bai L, Hu Z, Xu J, Li Y., Plant Physiol. 169(4), 2015
PMID: 26486592
Polysaccharides synthesised by Monodus subterraneus: Part II. The cell wall glucan
Ford, J. Chem. Soc. (), 1965
Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity.
Franz AK, Danielewicz MA, Wong DM, Anderson LA, Boothe JR., ACS Chem. Biol. 8(5), 2013
PMID: 23521767
Screening microalgae strains for their productivity in methane following anaerobic digestion
Frigon, Appl. Energy 108(), 2013
Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes
Gao, BMC Genom. (), 2014
Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae
Gelin, Org. Geochem. 30(), 1999
Exploiting diversity and synthetic biology for the production of algal biofuels.
Georgianna DR, Mayfield SP., Nature 488(7411), 2012
PMID: 22895338
Anaerobic digestion of Algae.
GOLUEKE CG, OSWALD WJ, GOTAAS HB., Appl Microbiol 5(1), 1957
PMID: 13403639
Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production.
Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP., Bioresour. Technol. 110(), 2012
PMID: 22336742
Thermal pretreatment to improve methane production of Scenedesmus biomass
Gonzalez-Fernandez, Biomass Bioenergy 40(), 2012
Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion.
Grimm P, Risse JM, Cholewa D, Muller JM, Beshay U, Friehs K, Flaschel E., J. Biotechnol. 215(), 2015
PMID: 25910451
Acutodesmus obliquus as a benchmark strain for evaluating methane production from microalgae: influence of different storage and pretreatment methods on biogas yield
Gruber-Brunhumer, Algal Res. 12(), 2015
Mechanism of inhibition caused by long chain fatty acids in anaerobic digestion process
Hanaki, Biotechnol. Bioeng. 23(), 1981
Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation.
Hanreich A, Schimpf U, Zakrzewski M, Schluter A, Benndorf D, Heyer R, Rapp E, Puhler A, Reichl U, Klocke M., Syst. Appl. Microbiol. 36(5), 2013
PMID: 23694815
Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment.
He S, Fan X, Katukuri NR, Yuan X, Wang F, Guo RB., Bioresour. Technol. 204(), 2015
PMID: 26773949
Pretreatments to enhance the digestibility of lignocellulosic biomass.
Hendriks AT, Zeeman G., Bioresour. Technol. 100(1), 2008
PMID: 18599291
Anaerobic digestion of Chlorella vulgaris for energy production
Hernandez, Resour. Conserv. Recycle 9(), 1993
Dunaliella biotechnology: methods and applications.
Hosseini Tafreshi A, Shariati M., J. Appl. Microbiol. 107(1), 2009
PMID: 19245408

IEA, 2015
The Chlamydomonas cell wall: characterization of the wall framework.
Imam SH, Buchanan MJ, Shin HC, Snell WJ., J. Cell Biol. 101(4), 1985
PMID: 2413047
Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing.
Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M, Gartemann KH, Junemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Puhler A, Schluter A, Goesmann A., PLoS ONE 6(1), 2011
PMID: 21297863
Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae.
Ji SQ, Wang B, Lu M, Li FL., Appl. Environ. Microbiol. 82(3), 2015
PMID: 26590273
Algae biofuels: versatility for the future of bioenergy.
Jones CS, Mayfield SP., Curr. Opin. Biotechnol. 23(3), 2011
PMID: 22104720
A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae)
Kapaun, Planta 197(), 1995
A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass.
Klassen V, Blifernez-Klassen O, Hoekzema Y, Mussgnug JH, Kruse O., J. Biotechnol. 215(), 2015
PMID: 26022425
Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides
Kloareg, Oceanogr. Mar. Biol. 26(), 1988
Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass.
Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B., Syst. Appl. Microbiol. 31(3), 2008
PMID: 18501543
Phylogenetic investigation of the aliphatic, non-hydrolyzable biopolymer algaenan, with a focus on green algae
Kodner, Org. Geochem. 40(), 2009
Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.
Krober M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehover P, Puhler A, Schluter A., J. Biotechnol. 142(1), 2009
PMID: 19480946
Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor.
Krause L, Diaz NN, Edwards RA, Gartemann KH, Kromeke H, Neuweger H, Puhler A, Runte KJ, Schluter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A., J. Biotechnol. 136(1-2), 2008
PMID: 18611419
Bacterial bioaugmentation for improving methane and hydrogen production from microalgae
Lü, Biotechnol. Biofuels 6(), 2013
Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass
Lakaniemi, Biotechnol. Biofuels 4(), 2011
Anaerobic conversion of microalgal biomass to sustainable energy carriers--a review.
Lakaniemi AM, Tuovinen OH, Puhakka JA., Bioresour. Technol. 135(), 2012
PMID: 23021960
The cellulosome—a discrete cell-surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities
Lamed, Biotechnol. Bioeng. Symp. 13(), 1983
Life-cycle assessment of biodiesel production from microalgae.
Lardon L, Helias A, Sialve B, Steyer JP, Bernard O., Environ. Sci. Technol. 43(17), 2009
PMID: 19764204
Selection, breeding and engineering of microalgae for bioenergy and biofuel production.
Larkum AW, Ross IL, Kruse O, Hankamer B., Trends Biotechnol. 30(4), 2011
PMID: 22178650
Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases.
Li N, Chang WC, Warui DM, Booker SJ, Krebs C, Bollinger JM Jr., Biochemistry 51(40), 2012
PMID: 22947199
A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor.
Li A, Chu Y, Wang X, Ren L, Yu J, Liu X, Yan J, Zhang L, Wu S, Li S., Biotechnol Biofuels 6(1), 2013
PMID: 23320936
Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass.
Ma J, Zhao QB, Laurens LL, Jarvis EE, Nagle NJ, Chen S, Frear CS., Biotechnol Biofuels 8(), 2015
PMID: 26379773
Sporopollenin, the least known yet toughest natural biopolymer
Mackenzie, Front. Mater. 2(66), 2015
Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition
Mahdy, Energy Convers. Manage. 85(), 2014
Protease cell wall degradation of Chlorella vulgaris: effect on methane production.
Mahdy A, Mendez L, Blanco S, Ballesteros M, Gonzalez-Fernandez C., Bioresour. Technol. 171(), 2014
PMID: 25226058
Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion
Mahdy, Fuel 158(), 2015
Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp
Mahdy, J. Chem. Technol. Biotechnol. (), 2015
Carbohydrate-enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion
Markou, Fuel 111(), 2013
Thermal pretreatment of algae for anaerobic digestion.
Marsolek MD, Kendall E, Thompson PL, Shuman TR., Bioresour. Technol. 151(), 2013
PMID: 24189036
Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture.
Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J., Curr. Biol. 19(2), 2009
PMID: 19167225
Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode
McGinn, Algal Res. 1(), 2012
Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments.
Mendez L, Mahdy A, Timmers RA, Ballesteros M, Gonzalez-Fernandez C., Bioresour. Technol. 149(), 2013
PMID: 24096280
Biomethane production using fresh and thermally pretreated Chlorella vulgaris biomass: a comparison of batch and semi-continuous feeding mode
Mendez, Ecol. Eng. 84(), 2015
Hydroxyproline heterooligosaccharides in Chlamydomonas.
Miller DH, Lamport DT, Miller M., Science 176(4037), 1972
PMID: 5033634
A perspective on algal biogas
Murphy, IEA Bioenergy (), 2015
Microalgae as substrates for fermentative biogas production in a combined biorefinery concept.
Mussgnug JH, Klassen V, Schluter A, Kruse O., J. Biotechnol. 150(1), 2010
PMID: 20691224
Genetic tools and techniques for Chlamydomonas reinhardtii.
Mussgnug JH., Appl. Microbiol. Biotechnol. 99(13), 2015
PMID: 26025017
Metagenome from a Spirulina digesting biogas reactor: analysis via binning of contigs and classification of short reads.
Nolla-Ardevol V, Peces M, Strous M, Tegetmeyer HE., BMC Microbiol. 15(), 2015
PMID: 26680455
The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S., Appl. Microbiol. Biotechnol. 90(4), 2011
PMID: 21431397
Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion
Parawira, Biomass Bioenergy 32(), 2008
Anaerobic digestion of microalgal biomass with ultrasonic disintegration
Park, Int. Biodeter. Biodegr. 85(), 2013
Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass.
Passos F, Garcia J, Ferrer I., Bioresour. Technol. 138(), 2013
PMID: 23619135
Anaerobic digestion of microalgal biomass after ultrasound pretreatment.
Passos F, Astals S, Ferrer I., Waste Manag 34(11), 2014
PMID: 25002372
Improving biogas production from microalgae by enzymatic pretreatment.
Passos F, Hom-Diaz A, Blanquez P, Vicent T, Ferrer I., Bioresour. Technol. 199(), 2015
PMID: 26343574
Process integration of algae production and anaerobic digestion
Polakovicova, Chem. Eng. 29(), 2012
Evolution and diversity of plant cell walls: from algae to flowering plants.
Popper ZA, Michel G, Herve C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB., Annu Rev Plant Biol 62(), 2011
PMID: 21351878
Plant and algal cell walls: diversity and functionality.
Popper ZA, Ralet MC, Domozych DS., Ann. Bot. 114(6), 2014
PMID: 25453142
Phycoremediation and biogas potential of native algal isolates from soil and wastewater.
Prajapati SK, Kaushik P, Malik A, Vijay VK., Bioresour. Technol. 135(), 2012
PMID: 22985826
Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp through anaerobic digestion
Prajapati, Appl. Energy 114(), 2014
Enhanced methane production from algal biomass through short duration enzymatic pretreatment and codigestion with carbon rich waste
Prajapati, RSC Adv. 5(), 2015
Effect of nutrient supply status on biomass composition of eukaryotic green microalgae
Prochazkova, J. Appl. Phycol. 26(), 2014
Genetic engineering of algae for enhanced biofuel production.
Radakovits R, Jinkerson RE, Darzins A, Posewitz MC., Eukaryotic Cell 9(4), 2010
PMID: 20139239
Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana.
Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC., Nat Commun 3(), 2012
PMID: 22353717
Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing.
Rademacher A, Zakrzewski M, Schluter A, Schonberg M, Szczepanowski R, Goesmann A, Puhler A, Klocke M., FEMS Microbiol. Ecol. 79(3), 2011
PMID: 22126587
Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study
Raposo, J. Chem. Technol. Biot. 86(), 2011
Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris.
Ras M, Lardon L, Bruno S, Bernet N, Steyer JP., Bioresour. Technol. 102(1), 2010
PMID: 20678925
Effect of co-substrate feeding on methane yield of anaerobic digestion of Chlorella vulgaris
Retfalvi, J. Appl. Phycol. (), 2016
Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation
Rismani-Yazdi, Biotechnol. Biofuels (), 2012
Microalgae for oil Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor
Rodolfi, Biotechnol. Bioengy 102(), 2009
Second generation biofuels: high-efficiency microalgae for biodiesel production
Schenk, Bioenergy Res. 1(), 2008
The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology.
Schluter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Kromeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Puhler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehover P, Goesmann A., J. Biotechnol. 136(1-2), 2008
PMID: 18597880
Ultrastructure and composition of the Nannochloropsis gaditana cell wall.
Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, Posewitz MC, Gerken HG., Eukaryotic Cell 13(11), 2014
PMID: 25239976

Schwede, 2011

Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass.
Schwede S, Rehman ZU, Gerber M, Theiss C, Span R., Bioresour. Technol. 143(), 2013
PMID: 23831893
Effect of particle size on biogas generation from biomass residues
Sharma, Biomass 17(), 1988
Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis.
Shin H, Hong SJ, Kim H, Yoo C, Lee H, Choi HK, Lee CG, Cho BK., Bioresour. Technol. 194(), 2015
PMID: 26185926
Performance of anaerobic co-digestion of corn straw and algae biomass from lake Chaohu
Shuchuan, T. Chin. Soc. Agric. Eng. 28(), 2012
Unlocking nature's treasure-chest: screening for oleaginous algae.
Slocombe SP, Zhang Q, Ross M, Anderson A, Thomas NJ, Lapresa A, Rad-Menendez C, Campbell CN, Black KD, Stanley MS, Day JG., Sci Rep 5(), 2015
PMID: 26202369

Smith, 2001
The charophycean green algae provide insights into the early origins of plant cell walls.
Sorensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O'Neill MA, Fei Z, Rose JK, Domozych DS, Willats WG., Plant J. 68(2), 2011
PMID: 21707800
Anaerobic biotechnology for industrial wastewater treatment
Speece, Environ. Sci. Technol. 17(), 1983
Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions.
Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Puhler A, Schluter A., Biotechnol Biofuels 8(), 2015
PMID: 25688290
Cell wall sugars of some Scenedesmus species
Takeda, Phytochemistry 42(), 1996
Cellulose-synthesizing terminal complexes and microfibril structure in the brown alga Sphacelaria rigidula (Sphacelariales, Phaeophyceae)
Tamura, Phycol. Res. 44(), 1996
Temperature susceptibility of thermophilic methanogenic sludge: implications for reactor start-up and operation
van, Bioresour. Technol. 43(), 1993
Modeling modern methane emissions from natural wetlands 1. Model description and results
Walter, J. Geophys. Res. 106(), 2001
Microbial synthesis of alka(e)nes
Wang, Front. Bioeng. Biotechnol. 1(10), 2013
Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae).
Wang SB, Hu Q, Sommerfeld M, Chen F., Proteomics 4(3), 2004
PMID: 14997492
Nannochloropsis genomes reveal evolution of microalgal oleaginous traits
Wang, PLoS Genet. 10(1), 2014
Biogas production: current state and perspectives.
Weiland P., Appl. Microbiol. Biotechnol. 85(4), 2009
PMID: 19777226
Phytoplankton lipid content influences freshwater lake methanogenesis
West, Freshw. Biol. 60(), 2015
An outlook on microalgal biofuels.
Wijffels RH, Barbosa MJ., Science 329(5993), 2010
PMID: 20705853
Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing.
Wirth R, Kovacs E, Maroti G, Bagi Z, Rakhely G, Kovacs KL., Biotechnol Biofuels 5(), 2012
PMID: 22673110
Metagenome changes in the mesophilic biogas-producing community during fermentation of the green alga Scenedesmus obliquus.
Wirth R, Lakatos G, Bojti T, Maroti G, Bagi Z, Kis M, Kovacs A, Acs N, Rakhely G, Kovacs KL., J. Biotechnol. 215(), 2015
PMID: 26087313

Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process.
Wirth R, Lakatos G, Maroti G, Bagi Z, Minarovics J, Nagy K, Kondorosi E, Rakhely G, Kovacs KL., Biotechnol Biofuels 8(), 2015
PMID: 25873997
Biocommodities from photosynthetic microorganisms
Work, Environ. Prog. Sustain. 32(), 2013
Ettlia oleoabundans growth and oil production on agricultural anaerobic waste effluents.
Yang Y, Xu J, Vail D, Weathers P., Bioresour. Technol. 102(8), 2011
PMID: 21354787
Anaerobic co-digestion of algal sludge and waste paper to produce methane.
Yen HW, Brune DE., Bioresour. Technol. 98(1), 2006
PMID: 16386894
Ammonia inhibition in anaerobic digestion: a review
Yenigün, Process Biochem. 48(), 2013
Inhibition of residual n-hexane in anaerobic digestion of lipid-extracted microalgal wastes and microbial community shift
Yun, Environ. Sci. Pollut. Res. Int. (), 2015
Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing.
Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sorensen S, Puhler A, Schluter A., J. Biotechnol. 158(4), 2012
PMID: 22342600
Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions
Zamalloa, Appl. Energy 92(), 2012
Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor.
Zamalloa C, De Vrieze J, Boon N, Verstraete W., Appl. Microbiol. Biotechnol. 93(2), 2011
PMID: 22005739
Comparison of growth and lipid accumulation properties of two oleaginous microalgae under different nutrient conditions
Zhang, Front. Environ. Sci. Eng. 8(), 2014
Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source.
Zhong W, Zhang Z, Luo Y, Qiao W, Xiao M, Zhang M., Bioresour. Technol. 114(), 2012
PMID: 22459954
Material in PUB:
Teil dieser Dissertation

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 27449486
PubMed | Europe PMC

Suchen in

Google Scholar