Silicon-induced reversibility of cadmium toxicity in rice

Farooq MA, Detterbeck A, Clemens S, Dietz K-J (2016)
JOURNAL OF EXPERIMENTAL BOTANY 67(11): 3573-3585.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Farooq, Muhammed AnsarUniBi; Detterbeck, Amelie; Clemens, Stephan; Dietz, Karl-JosefUniBi
Abstract / Bemerkung
Rice exposed to a toxic cadmium concentration recovers from toxicity symptoms after supplementation of the medium with silicon, and transcript levels of marker genes are readjusted to that in unstressed conditions.Silicon (Si) modulates tolerance to abiotic stresses, but little is known about the reversibility of stress effects by supplementing previously stressed plants with Si. This is surprising since recovery experiments might allow mechanisms of Si-mediated amelioration to be addressed. Rice was exposed to 10 A mu M CdCl2 for 4 d in hydroponics, followed by 0.6mM Si(OH)(4) supplementation for 4 d. Si reversed the effects of Cd, as reflected in plant growth, photosynthesis, elemental composition, and some biochemical parameters. Cd-dependent deregulation of nutrient homeostasis was partially reversed by Si supply. Photosynthetic recovery within 48h following Si supply, coupled with strong stimulation of the ascorbate-glutathione system, indicates efficient activation of defense. The response was further verified by transcript analyses with emphasis on genes encoding members of the stress-associated protein (SAP) family. The transcriptional response to Cd was mostly reversed following Si supply. Reprogramming of the Cd response was obvious for Phytochelatin synthase 1, SAP1 , SAP14, and the transcription factor genes AP2/Erf020, Hsf31, and NAC6 whose transcript levels were strongly activated in roots of Cd-stressed rice, but down-regulated in the presence of Si. These findings, together with changes in biochemical parameters, highlight the significance of Si in growth recovery of Cd-stressed rice and indicate a decisive role for readjusting cell redox homeostasis.
Stichworte
Ascorbate; Cd toxicity; glutathione; oxidative stress; photosynthesis; rice; SAP; silicon; transcript regulation
Erscheinungsjahr
2016
Zeitschriftentitel
JOURNAL OF EXPERIMENTAL BOTANY
Band
67
Ausgabe
11
Seite(n)
3573-3585
ISSN
0022-0957
eISSN
1460-2431
Page URI
https://pub.uni-bielefeld.de/record/2904542

Zitieren

Farooq MA, Detterbeck A, Clemens S, Dietz K-J. Silicon-induced reversibility of cadmium toxicity in rice. JOURNAL OF EXPERIMENTAL BOTANY. 2016;67(11):3573-3585.
Farooq, M. A., Detterbeck, A., Clemens, S., & Dietz, K. - J. (2016). Silicon-induced reversibility of cadmium toxicity in rice. JOURNAL OF EXPERIMENTAL BOTANY, 67(11), 3573-3585. doi:10.1093/jxb/erw175
Farooq, Muhammed Ansar, Detterbeck, Amelie, Clemens, Stephan, and Dietz, Karl-Josef. 2016. “Silicon-induced reversibility of cadmium toxicity in rice”. JOURNAL OF EXPERIMENTAL BOTANY 67 (11): 3573-3585.
Farooq, M. A., Detterbeck, A., Clemens, S., and Dietz, K. - J. (2016). Silicon-induced reversibility of cadmium toxicity in rice. JOURNAL OF EXPERIMENTAL BOTANY 67, 3573-3585.
Farooq, M.A., et al., 2016. Silicon-induced reversibility of cadmium toxicity in rice. JOURNAL OF EXPERIMENTAL BOTANY, 67(11), p 3573-3585.
M.A. Farooq, et al., “Silicon-induced reversibility of cadmium toxicity in rice”, JOURNAL OF EXPERIMENTAL BOTANY, vol. 67, 2016, pp. 3573-3585.
Farooq, M.A., Detterbeck, A., Clemens, S., Dietz, K.-J.: Silicon-induced reversibility of cadmium toxicity in rice. JOURNAL OF EXPERIMENTAL BOTANY. 67, 3573-3585 (2016).
Farooq, Muhammed Ansar, Detterbeck, Amelie, Clemens, Stephan, and Dietz, Karl-Josef. “Silicon-induced reversibility of cadmium toxicity in rice”. JOURNAL OF EXPERIMENTAL BOTANY 67.11 (2016): 3573-3585.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The controversies of silicon's role in plant biology.
Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR., New Phytol 221(1), 2019
PMID: 30007071
The Ameliorative Effect of Silicon on Maize Plants Grown in Mg-Deficient Conditions.
Hosseini SA, Naseri Rad S, Ali N, Yvin JC., Int J Mol Sci 20(4), 2019
PMID: 30813370
Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants.
Chen R, Zhang C, Zhao Y, Huang Y, Liu Z., Environ Sci Pollut Res Int 25(3), 2018
PMID: 29124638
Silicon deposition in roots minimizes the cadmium accumulation and oxidative stress in leaves of cowpea plants.
Pereira TS, Pereira TS, Souza CLFC, Lima EJA, Batista BL, Lobato AKDS., Physiol Mol Biol Plants 24(1), 2018
PMID: 29398842
The role of silicon in plant biology: a paradigm shift in research approach.
Frew A, Weston LA, Reynolds OL, Gurr GM., Ann Bot 121(7), 2018
PMID: 29438453
Impacts of a Compound Amendment on Cd Immobilization, Enzyme Activities and Crop Uptake in Acidic Cd-Contaminated Paddy Soils.
Shan S, Guo Z, Lei P, Cheng W, Wu M, Fu Z, Wu S, Du D, Wu L., Bull Environ Contam Toxicol 101(2), 2018
PMID: 29947914
Silicon ameliorates chromium toxicity through phytochelatin-mediated vacuolar sequestration in the roots of Oryza sativa (L.).
Huda AK, Haque MA, Zaman R, Swaraz AM, Kabir AH., Int J Phytoremediation 19(3), 2017
PMID: 27434775
Effect of silicon fertilizers on cadmium in rice (Oryza sativa) tissue at tillering stage.
Ji X, Liu S, Juan H, Bocharnikova EA, Matichenkov VV., Environ Sci Pollut Res Int 24(11), 2017
PMID: 28283985
Silicon's Role in Abiotic and Biotic Plant Stresses.
Debona D, Rodrigues FA, Datnoff LE., Annu Rev Phytopathol 55(), 2017
PMID: 28504920
Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants.
Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Saeed R, Wu L., Ecotoxicol Environ Saf 145(), 2017
PMID: 28710950
The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.
Müller SM, Wang S, Telman W, Liebthal M, Schnitzer H, Viehhauser A, Sticht C, Delatorre C, Wirtz M, Hell R, Dietz KJ., Plant J 91(6), 2017
PMID: 28644561
Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet.
Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz KJ., J Exp Bot 68(21-22), 2017
PMID: 29140437

87 References

Daten bereitgestellt von Europe PubMed Central.

Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding
Balakhnina TI, Matichenkov VV, Wlodarczyk T, Borkowska A, Nosalewicz M, Fomina IR., 2012
Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants
Clemens S., 2006
Plant science: the key to preventing slow cadmium poisoning
Clemens S, Aarts MGM, Thomine S, Verbruggen N., 2013
A long way ahead: understanding and engineering plant metal accumulation
Clemens S, Palmgren MG, Kraemer U., 2002
Multi-tasking phytochelatin synthases
Clemens S, Persoh D., 2009
Silica in plants: biological, biochemical and chemical studies.
Currie HA, Perry CC., Ann. Bot. 100(7), 2007
PMID: 17921489
SILICON.
Epstein E., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012222
Silicon in life: a bioinorganic solution to bioorganic essentiality
Exley C., 1998
Silicon-mediated oxidative stress tolerance and genetic variability in rice (Oryza sativa L.) grown under combined stress of salinity and boron toxicity
Farooq MA, Saqib ZA, Akhtar J., 2015
Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L
Feng JP, Shi QH, Wang XF, Wei M, Yang FJ, Xu HN., 2010
Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare
Finkemeier I, Kluge C, Metwally A, Georgi M, Grothjohann N, Dietz KJ., 2003
The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.
Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ., J. Biol. Chem. 280(13), 2005
PMID: 15632145
Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate–glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity
Garg N, Bhandari P., 2016
Ascorbate as seen through plant evolution: the rise of a successful molecule?
Gest N, Gautier H, Stevens R., J. Exp. Bot. 64(1), 2012
PMID: 23109712
Characterization of a HKT-type transporter in rice as a general alkali cation transporter.
Golldack D, Su H, Quigley F, Kamasani UR, Munoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O., Plant J. 31(4), 2002
PMID: 12182709
Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings
Hammond KE, Evans DE, Hodson MJ., 1995
Cadmium: toxicity and tolerance in plants.
Hasan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A., J Environ Biol 30(2), 2009
PMID: 20121012
Application of silicon enhanced drought tolerance in Sorghum bicolor
Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A., 2005
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes.
Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P., Adv Bioinformatics 2008(), 2008
PMID: 19956698
Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance.
Huang J, Wang MM, Jiang Y, Bao YM, Huang X, Sun H, Xu DQ, Lan HX, Zhang HS., Gene 420(2), 2008
PMID: 18588956
Phylogenetic and expression analysis of ZnF-AN1 genes in plants.
Jin Y, Wang M, Fu J, Xuan N, Zhu Y, Lian Y, Jia Z, Zheng J, Wang G., Genomics 90(2), 2007
PMID: 17524611
Mitigation effects of silicon on maize plants grown at high zinc
Kaya C, Tuna AL, Sonmez O, Ince F, Higgs D., 2009
The input-output balance of cadmium in a paddy field of Tokyo.
Kikuchi T, Okazaki M, Toyota K, Motobayashi T, Kato M., Chemosphere 67(5), 2007
PMID: 17207840
Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones.
Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ., BMC Plant Biol. 14(), 2014
PMID: 24405887
Cadmium in plants on polluted soil: effects of soil factors, hyperaccumulation, and amendments
Kirkham MB., 2006
Alleviation of copper toxicity in Arabidopsis thaliana by silicon addition to hydroponic solutions
Li J, Leisner SM, Frantz J., 2008
Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review.
Liang Y, Sun W, Zhu YG, Christie P., Environ. Pollut. 147(2), 2006
PMID: 16996179
Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum
Liang Y, Yang C, Shi H., 2001
Rapid effect of copper on lignin biosynthesis in soybean roots
Lin CC, Chen LM, Liu ZH., 2005
Silicon mitigates the cadmium toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development
Lukacova Z, Svubova R, Kohanova J, Lux A., 2013
Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance.
Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y., Physiol Plant 115(1), 2002
PMID: 12010471
Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses
Ma JF., 2004
A silicon transporter in rice.
Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M., Nature 440(7084), 2006
PMID: 16572174
Silicon uptake and accumulation in higher plants
Ma JF, Yamaji N., 2006
Signalling responses in plants to heavy metal stress
Maksymiec W., 2007

Marschner H., 1995
Genotypic variation of the response to cadmium toxicity in Pisum sativum L.
Metwally A, Safronova VI, Belimov AA, Dietz KJ., J. Exp. Bot. 56(409), 2004
PMID: 15533881
Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways.
Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G., Plant Physiol. 153(3), 2010
PMID: 20488891
Identification of maize silicon influx transporters.
Mitani N, Yamaji N, Ma JF., Plant Cell Physiol. 50(1), 2008
PMID: 18676379
Reactive oxygen gene network of plants
Mittler R, Vanderauwera S, Gollery M, Van-Breusegem F., 2004
OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles.
Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H., New Phytol. 189(1), 2010
PMID: 20840506
Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco
Mukhopadhyay A, Vij S, Tyagi AK., 2004
Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium
Nwugo CC, Huerta AJ., 2008
Time course analysis of gene regulation under cadmium stress in rice
Ogawa I, Nakanishi H, Mori S, Nishizawa NK., 2009
Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast.
Pavlovic J, Samardzic J, Maksimovic V, Timotijevic G, Stevic N, Laursen KH, Hansen TH, Husted S, Schjoerring JK, Liang Y, Nikolic M., New Phytol. 198(4), 2013
PMID: 23496257
An improved chemiluminescence method for hydrogen peroxide determination in plant tissues
Perez FJ, Rubio S., 2006
Overexpression of OsNAC6 transcription factor from Indonesia rice cultivar enhances drought and salt tolerance
Rachmat A, Nugroho S, Sukma D, Aswidinnoor H, Sudarsono null., 2014
Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data.
Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF., Nucleic Acids Res. 37(6), 2009
PMID: 19237396
Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice.
Sasaki A, Yamaji N, Yokosho K, Ma JF., Plant Cell 24(5), 2012
PMID: 22589467
Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections
Savvas E, Giotis D, Chatzieustratiou E, Bakea M, Patakioutas G., 2008
Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings
Shah K, Kumar RG, Verma S, Dubey RS., 2001
Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status
Sharma SS, Kaul S, Metwally A, Goyal KC, Finkemeier I, Dietz KJ., 2004
Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings
Suzuki N., 2005
The OsNRAMP1 iron transporter is involved in Cd accumulation in rice.
Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK., J. Exp. Bot. 62(14), 2011
PMID: 21697258
Rice seedlings under cadmium stress: effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures
Tripathi DK, Singh VP, Kumar D, Chauhan DK., 2012
Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium
Tripathi DK, Singh VP, Kumar D, Chauhan DK., 2012
Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants.
Vaculik M, Landberg T, Greger M, Luxova M, Stolarikova M, Lux A., Ann. Bot. 110(2), 2012
PMID: 22455991
Silicon mitigates cadmium inhibitory effects in young maize plants
Vaculik M, Lux A, Luxová M, Tanimoto E, Lichtscheidl I., 2009
Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd(2+)-hypertolerant facultative metallophyte Arabidopsis halleri
Weber M, Trampczynska A, Clemens S., 2006
Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China
Williams PN, Lei M, Sun GX, Huang Q, Lu Y, Deacon C, Meharg AA, Zhu YG., 2009
Regulation of gene expression by photosynthetic signals triggered through modified CO2 availability.
Wormuth D, Baier M, Kandlbinder A, Scheibe R, Hartung W, Dietz KJ., BMC Plant Biol. 6(), 2006
PMID: 16916444
Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants
Yadav SK., 2010
High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice.
Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, Wang LH, Carey AM, Deacon C, Raab A, Meharg AA, Williams PN., Environ. Sci. Technol. 42(13), 2008
PMID: 18678041
Expression of sulfur uptake assimilation-related genes in response to cadmium, bensulfuron-methyl and their co-contamination in rice roots
Zhou J, Wang Z, Huang Z, Lu C, Han Z, Zhang J, Jiang H, Ge C, Yang J., 2014
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27122572
PubMed | Europe PMC

Suchen in

Google Scholar