Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants

Sharma SS, Dietz K-J, Mimura T (2016)
Plant, Cell & Environment 39(5): 1112-1126.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Sharma, Shanti S.; Dietz, Karl-JosefUniBi; Mimura, Tetsuro
Abstract / Bemerkung
Plant cells orchestrate an array of molecular mechanisms for maintaining plasmatic concentrations of essential heavy metal (HM) ions, for example, iron, zinc and copper, within the optimal functional range. In parallel, concentrations of non-essential HMs and metalloids, for example, cadmium, mercury and arsenic, should be kept below their toxicity threshold levels. Vacuolar compartmentalization is central to HM homeostasis. It depends on two vacuolar pumps (V-ATPase and V-PPase) and a set of tonoplast transporters, which are directly driven by proton motive force, and primary ATP-dependent pumps. While HM non-hyperaccumulator plants largely sequester toxic HMs in root vacuoles, HM hyperaccumulators usually sequester them in leaf cell vacuoles following efficient long-distance translocation. The distinct strategies evolved as a consequence of organ-specific differences particularly in vacuolar transporters and in addition to distinct features in long-distance transport. Recent molecular and functional characterization of tonoplast HM transporters has advanced our understanding of their contribution to HM homeostasis, tolerance and hyperaccumulation. Another important part of the dynamic vacuolar sequestration syndrome involves enhanced vacuolation. It involves vesicular trafficking in HM detoxification. The present review provides an updated account of molecular aspects that contribute to the vacuolar compartmentalization of HMs. 2016 John Wiley & Sons Ltd.
Erscheinungsjahr
2016
Zeitschriftentitel
Plant, Cell & Environment
Band
39
Ausgabe
5
Seite(n)
1112-1126
ISSN
0140-7791
Page URI
https://pub.uni-bielefeld.de/record/2903339

Zitieren

Sharma SS, Dietz K-J, Mimura T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell & Environment. 2016;39(5):1112-1126.
Sharma, S. S., Dietz, K. - J., & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell & Environment, 39(5), 1112-1126. doi:10.1111/pce.12706
Sharma, Shanti S., Dietz, Karl-Josef, and Mimura, Tetsuro. 2016. “Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants”. Plant, Cell & Environment 39 (5): 1112-1126.
Sharma, S. S., Dietz, K. - J., and Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell & Environment 39, 1112-1126.
Sharma, S.S., Dietz, K.-J., & Mimura, T., 2016. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell & Environment, 39(5), p 1112-1126.
S.S. Sharma, K.-J. Dietz, and T. Mimura, “Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants”, Plant, Cell & Environment, vol. 39, 2016, pp. 1112-1126.
Sharma, S.S., Dietz, K.-J., Mimura, T.: Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell & Environment. 39, 1112-1126 (2016).
Sharma, Shanti S., Dietz, Karl-Josef, and Mimura, Tetsuro. “Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants”. Plant, Cell & Environment 39.5 (2016): 1112-1126.

27 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Interference between arsenic-induced toxicity and hypoxia.
Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz KJ., Plant Cell Environ 42(2), 2019
PMID: 30198184
Arabidopsis CNGC Family Members Contribute to Heavy Metal Ion Uptake in Plants.
Moon JY, Belloeil C, Ianna ML, Shin R., Int J Mol Sci 20(2), 2019
PMID: 30669376
NRT1.1 Regulates Nitrate Allocation and Cadmium Tolerance in Arabidopsis.
Jian S, Luo J, Liao Q, Liu Q, Guan C, Zhang Z., Front Plant Sci 10(), 2019
PMID: 30972097
Comparative Transcriptomic Studies on a Cadmium Hyperaccumulator Viola baoshanensis and Its Non-Tolerant Counterpart V. inconspicua.
Shu H, Zhang J, Liu F, Bian C, Liang J, Liang J, Liang W, Lin Z, Shu W, Li J, Shi Q, Liao B., Int J Mol Sci 20(8), 2019
PMID: 30999673
Variation in Membrane Trafficking Linked to SNARE AtSYP51 Interaction With Aquaporin NIP1;1.
Barozzi F, Papadia P, Stefano G, Renna L, Brandizzi F, Migoni D, Fanizzi FP, Piro G, Di Sansebastiano GP., Front Plant Sci 9(), 2018
PMID: 30687352
Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf.
Zhao X, Luo L, Cao Y, Liu Y, Li Y, Wu W, Lan Y, Jiang Y, Gao S, Zhang Z, Shen Y, Pan G, Lin H., BMC Genomics 19(1), 2018
PMID: 29370753
Hitting the Wall-Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress.
Novaković L, Guo T, Bacic A, Sampathkumar A, Johnson KL., Plants (Basel) 7(4), 2018
PMID: 30360552
Cadmium associates with oxalate in calcium oxalate crystals and competes with calcium for translocation to stems in the cadmium bioindicator Gomphrena claussenii.
Pongrac P, Serra TS, Castillo-Michel H, Vogel-Mikuš K, Arčon I, Kelemen M, Jenčič B, Kavčič A, Villafort Carvalho MT, Aarts MGM., Metallomics 10(11), 2018
PMID: 30183791
Mechanism Enhancing Arabidopsis Resistance to Cadmium: The Role of NRT1.5 and Proton Pump.
Wang T, Hua Y, Chen M, Zhang J, Guan C, Zhang Z., Front Plant Sci 9(), 2018
PMID: 30619437
Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure.
Bayçu G, Gevrek-Kürüm N, Moustaka J, Csatári I, Rognes SE, Moustakas M., Environ Sci Pollut Res Int 24(3), 2017
PMID: 27838905
Cadmium-induced changes in vacuolar aspects of Arabidopsis thaliana.
Sharma SS, Yamamoto K, Hamaji K, Ohnishi M, Anegawa A, Sharma S, Thakur S, Kumar V, Uemura T, Nakano A, Mimura T., Plant Physiol Biochem 114(), 2017
PMID: 28257948
Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants.
Vera-Estrella R, Gómez-Méndez MF, Amezcua-Romero JC, Barkla BJ, Rosas-Santiago P, Pantoja O., Planta 246(3), 2017
PMID: 28455771
Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane.
Ruta LL, Kissen R, Nicolau I, Neagoe AD, Petrescu AJ, Bones AM, Farcasanu IC., Appl Microbiol Biotechnol 101(14), 2017
PMID: 28577027
Responses of Plant Proteins to Heavy Metal Stress-A Review.
Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY., Front Plant Sci 8(), 2017
PMID: 28928754
Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia.
González-Guerrero M, Escudero V, Saéz Á, Tejada-Jiménez M., Front Plant Sci 7(), 2016
PMID: 27524990
Vacuolar Iron Transporter BnMEB2 Is Involved in Enhancing Iron Tolerance of Brassica napus.
Zhu W, Zuo R, Zhou R, Huang J, Tang M, Cheng X, Liu Y, Tong C, Xiang Y, Dong C, Liu S., Front Plant Sci 7(), 2016
PMID: 27679642

137 References

Daten bereitgestellt von Europe PubMed Central.

The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress.
Ali S, Farooq MA, Yasmeen T, Hussain S, Arif MS, Abbas F, Bharwana SA, Zhang G., Ecotoxicol. Environ. Saf. 89(), 2012
PMID: 23260243
Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa
Azzarello, Environmental and Experimental Botany 81(), 2012
Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants.
Barberon M, Zelazny E, Robert S, Conejero G, Curie C, Friml J, Vert G., Proc. Natl. Acad. Sci. U.S.A. 108(32), 2011
PMID: 21628566
Overexpression of AtMHX in tobacco causes increased sensitivity to Mg2+, Zn2+, and Cd2+ ions, induction of V-ATPase expression, and a reduction in plant size.
Berezin I, Mizrachy-Dagry T, Brook E, Mizrahi K, Elazar M, Zhuo S, Saul-Tcherkas V, Shaul O., Plant Cell Rep. 27(5), 2008
PMID: 18327593
The defence hypothesis of elemental hyperaccumulation: status, challenges and new directions
Boyd, Plant and Soil 293(), 2007
Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore
Boyd, Oikos 70(), 1994
Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family.
Chen Z, Fujii Y, Yamaji N, Masuda S, Takemoto Y, Kamiya T, Yusuyin Y, Iwasaki K, Kato S, Maeshima M, Ma JF, Ueno D., J. Exp. Bot. 64(14), 2013
PMID: 23963678
The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast.
Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI., Proc. Natl. Acad. Sci. U.S.A. 95(20), 1998
PMID: 9751787
Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis.
Cobbett C, Goldsbrough P., Annu Rev Plant Biol 53(), 2002
PMID: 12221971
Zinc-induced vacuolation in root meristematic cells of Festuca rubra L
Davies, Plant, Cell & Environment 14(), 1991
Zinc-induced vacuolation in root meristematic cells of cereals
Davies, Annals of Botany 69(), 1992
Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance.
Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR., Plant Cell 15(5), 2003
PMID: 12724539
Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation.
Desbrosses-Fonrouge AG, Voigt K, Schroder A, Arrivault S, Thomine S, Kramer U., FEBS Lett. 579(19), 2005
PMID: 16038907
Exchangeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae.
Devirgiliis C, Murgia C, Danscher G, Perozzi G., Biochem. Biophys. Res. Commun. 323(1), 2004
PMID: 15351701
Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level.
Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D., J. Exp. Bot. 52(363), 2001
PMID: 11559732
Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels.
Drager DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Kramer U., Plant J. 39(3), 2004
PMID: 15255871
Caesium accumulation in yeast and plants is selectively repressed by loss of the SNARE Sec22p/SEC22.
Draxl S, Muller J, Li WB, Michalke B, Scherb H, Hense BA, Tschiersch J, Kanter U, Schaffner AR., Nat Commun 4(), 2013
PMID: 23817436
High expression in leaves of the zinc hyperaccumulator Arabidopsis halleri of AhMHX, a homolog of an Arabidopsis thaliana vacuolar metal/proton exchanger.
Elbaz B, Shoshani-Knaani N, David-Assael O, Mizrachy-Dagri T, Mizrahi K, Saul H, Brook E, Berezin I, Shaul O., Plant Cell Environ. 29(6), 2006
PMID: 17080942
Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare.
Finkemeier I, Kluge C, Metwally A, Georgi M, Grotjohann N, Dietz KJ., Plant Cell Environ. 26(6), 2003
PMID: 12803610
The endomembrane system: a green perspective.
Frigerio L, Hawes C., Traffic 9(10), 2008
PMID: 18826560
V-ATPase dysfunction under excess zinc inhibits Arabidopsis cell expansion.
Fukao Y, Ferjani A., Plant Signal Behav 6(9), 2011
PMID: 21847017
iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis.
Fukao Y, Ferjani A, Tomioka R, Nagasaki N, Kurata R, Nishimori Y, Fujiwara M, Maeshima M., Plant Physiol. 155(4), 2011
PMID: 21325567
The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency.
Garcia-Molina A, Andres-Colas N, Perea-Garcia A, Del Valle-Tascon S, Penarrubia L, Puig S., Plant J. 65(6), 2011
PMID: 21281364
Vacuolar-Iron-Transporter1-Like proteins mediate iron homeostasis in Arabidopsis.
Gollhofer J, Timofeev R, Lan P, Schmidt W, Buckhout TJ., PLoS ONE 9(10), 2014
PMID: 25360591
Intracellular zinc distribution and transport in C6 rat glioma cells.
Haase H, Beyersmann D., Biochem. Biophys. Res. Commun. 296(4), 2002
PMID: 12200136
Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis.
Hamaji K, Nagira M, Yoshida K, Ohnishi M, Oda Y, Uemura T, Goh T, Sato MH, Morita MT, Tasaka M, Hasezawa S, Nakano A, Hara-Nishimura I, Maeshima M, Fukaki H, Mimura T., Plant Cell Physiol. 50(12), 2009
PMID: 19880402
Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4.
Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U., Nature 453(7193), 2008
PMID: 18425111
A conserved BURP domain defines a novel group of plant proteins with unusual primary structures.
Hattori J, Boutilier KA, van Lookeren Campagne MM, Miki BL., Mol. Gen. Genet. 259(4), 1998
PMID: 9790599
Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis.
Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Kramer U., Plant Cell 24(2), 2012
PMID: 22374397
Cadmium inhibits vacuolar H(+)-ATPase and endocytosis in rat kidney cortex.
Herak-Kramberger CM, Brown D, Sabolic I., Kidney Int. 53(6), 1998
PMID: 9607204
Cadmium inhibits vacuolar H(+)ATPase-mediated acidification in the rat epididymis.
Herak-Kramberger CM, Sabolic I, Blanusa M, Smith PJ, Brown D, Breton S., Biol. Reprod. 63(2), 2000
PMID: 10906070
Different responses of tonoplast proton pumps in cucumber roots to cadmium and copper.
Kabala K, Janicka-Russak M, Klobus G., J. Plant Physiol. 167(16), 2010
PMID: 20696494
Mechanism of Cd and Cu action on the tonoplast proton pumps in cucumber roots.
Kabala K, Janicka-Russak M, Anklewicz A., Physiol Plant 147(2), 2012
PMID: 22607526
Arabidopsis Sec1/Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic.
Karnik R, Grefen C, Bayne R, Honsbein A, Kohler T, Kioumourtzoglou D, Williams M, Bryant NJ, Blatt MR., Plant Cell 25(4), 2013
PMID: 23572542
A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc.
Kawachi M, Kobae Y, Mori H, Tomioka R, Lee Y, Maeshima M., Plant Cell Physiol. 50(6), 2009
PMID: 19433490
Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1.
Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML., Science 314(5803), 2006
PMID: 17082420
The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana.
Klaumann S, Nickolaus SD, Furst SH, Starck S, Schneider S, Ekkehard Neuhaus H, Trentmann O., New Phytol. 192(2), 2011
PMID: 21692805
cDNA cloning of 12 subunits of the V-type ATPase from Mesembryanthemum crystallinum and their expression under stress.
Kluge C, Lamkemeyer P, Tavakoli N, Golldack D, Kandlbinder A, Dietz KJ., Mol. Membr. Biol. 20(2), 2003
PMID: 12851073
Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis.
Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M., Plant Cell Physiol. 45(12), 2004
PMID: 15653794
Enhanced Cd2+ -selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers.
Koren'kov V, Park S, Cheng NH, Sreevidya C, Lachmansingh J, Morris J, Hirschi K, Wagner GJ., Planta 225(2), 2006
PMID: 16845524
Metal hyperaccumulation in plants.
Kramer U., Annu Rev Plant Biol 61(), 2010
PMID: 20192749
Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation.
Krebs M, Beyhl D, Gorlich E, Al-Rasheid KA, Marten I, Stierhof YD, Hedrich R, Schumacher K., Proc. Natl. Acad. Sci. U.S.A. 107(7), 2010
PMID: 20133698
Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron.
Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S., EMBO J. 24(23), 2005
PMID: 16270029
Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency.
Lanquar V, Ramos MS, Lelievre F, Barbier-Brygoo H, Krieger-Liszkay A, Kramer U, Thomine S., Plant Physiol. 152(4), 2010
PMID: 20181755
Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance.
Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A., Proc. Natl. Acad. Sci. U.S.A. 103(47), 2006
PMID: 17101982
A fern that hyperaccumulates arsenic.
Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED., Nature 409(6820), 2001
PMID: 11214308
Plant cation/H+ exchangers (CAXs): biological functions and genetic manipulations.
Manohar M, Shigaki T, Hirschi KD., Plant Biol (Stuttg) 13(4), 2011
PMID: 21668596
Dynamics of activity and structure of the tonoplast vacuolar-type H+−ATPase in plants with differing CAM expression and in a C3 plant under salt stress
Mariaux, Protoplasma 196(), 1997

Marschner, 1995
Vacuolar transporters and their essential role in plant metabolism
Martinoia, Journal of Experimental Botany 83(), 2007
Vacuolar transporters in their physiological context.
Martinoia E, Meyer S, De Angeli A, Nagy R., Annu Rev Plant Biol 63(), 2012
PMID: 22404463
Phylogenetic relationships within cation transporter families of Arabidopsis.
Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML., Plant Physiol. 126(4), 2001
PMID: 11500563
Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4.
Mei H, Cheng NH, Zhao J, Park S, Escareno RA, Pittman JK, Hirschi KD., New Phytol. 183(1), 2009
PMID: 19368667
Functional analysis of the rice vacuolar zinc transporter OsMTP1.
Menguer PK, Farthing E, Peaston KA, Ricachenevsky FK, Fett JP, Williams LE., J. Exp. Bot. 64(10), 2013
PMID: 23761487
The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation.
Merlot S, Hannibal L, Martins S, Martinelli L, Amir H, Lebrun M, Thomine S., J. Exp. Bot. 65(6), 2014
PMID: 24510940
Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells.
Migocka M, Kosieradzka A, Papierniak A, Maciaszczyk-Dziubinska E, Posyniak E, Garbiec A, Filleur S., J. Exp. Bot. 66(3), 2014
PMID: 25422498
Rapid increase of vacuolar volume in response to salt stress.
Mimura T, Kura-Hotta M, Tsujimura T, Ohnishi M, Miura M, Okazaki Y, Mimura M, Maeshima M, Washitani-Nemoto S., Planta 216(3), 2002
PMID: 12520330
OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles.
Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H., New Phytol. 189(1), 2010
PMID: 20840506
Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities.
Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H., Plant Physiol. Biochem. 43(8), 2005
PMID: 16198592
A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation.
Momonoi K, Yoshida K, Mano S, Takahashi H, Nakamori C, Shoji K, Nitta A, Nishimura M., Plant J. 59(3), 2009
PMID: 19366427
Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity
Montanini, BMC Genomics 107(), 2007
AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis.
Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P., Plant Physiol. 149(2), 2008
PMID: 19036834
Vacuolar proton pumps and aquaporins involved in rapid internode elongation of deepwater rice.
Muto Y, Segami S, Hayashi H, Sakurai J, Murai-Hatano M, Hattori Y, Ashikari M, Maeshima M., Biosci. Biotechnol. Biochem. 75(1), 2011
PMID: 21228479
Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism.
Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N., FEMS Microbiol. Ecol. 44(2), 2003
PMID: 19719642
Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens.
Oomen RJ, Wu J, Lelievre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MG, Thomine S., New Phytol. 181(3), 2008
PMID: 19054339
Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein.
Ortiz DF, Ruscitti T, McCue KF, Ow DW., J. Biol. Chem. 270(9), 1995
PMID: 7876244
The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury.
Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y., Plant J. 69(2), 2011
PMID: 21919981
Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense.
Persans MW, Nieman K, Salt DE., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481436
Reduction and coordination of arsenic in Indian mustard.
Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE., Plant Physiol. 122(4), 2000
PMID: 10759512
Localizing the biochemical transformations of arsenate in a hyperaccumulating fern.
Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN., Environ. Sci. Technol. 40(16), 2006
PMID: 16955900
Phytoremediation.
Pilon-Smits E., Annu Rev Plant Biol 56(), 2005
PMID: 15862088
Cadmium-induced ultrastructural changes in suspension-cultured tobacco cells (Nicotiana tabacum L. var. Xanthi)
Reese, Environmental and Experimental Botany 26(), 1986
Exposure of Dunaliella tertiolecta to lead and aluminum: toxicity and effects on ultrastructure.
Sacan MT, Oztay F, Bolkent S., Biol Trace Elem Res 120(1-3), 2007
PMID: 17916979
AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots.
Schaaf G, Honsbein A, Meda AR, Kirchner S, Wipf D, von Wiren N., J. Biol. Chem. 281(35), 2006
PMID: 16790430
Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants.
Schneider T, Schellenberg M, Meyer S, Keller F, Gehrig P, Riedel K, Lee Y, Eberl L, Martinoia E., Proteomics 9(10), 2009
PMID: 19391183
A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) F.K. Meyer.
Schneider T, Persson DP, Husted S, Schellenberg M, Gehrig P, Lee Y, Martinoia E, Schjoerring JK, Meyer S., Plant J. 73(1), 2012
PMID: 22974502
Regulation of the V-type ATPase by redox modulation.
Seidel T, Scholl S, Krebs M, Rienmuller F, Marten I, Hedrich R, Hanitzsch M, Janetzki P, Dietz KJ, Schumacher K., Biochem. J. 448(2), 2012
PMID: 22943363
Energization of vacuolar transport in plant cells and its significance under stress.
Seidel T, Siek M, Marg B, Dietz KJ., Int Rev Cell Mol Biol 304(), 2013
PMID: 23809435
The relationship between metal toxicity and cellular redox imbalance.
Sharma SS, Dietz KJ., Trends Plant Sci. 14(1), 2008
PMID: 19070530
Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status.
Sharma SS, Kaul S, Metwally A, Goyal KC, Finkemeier I, Dietz KJ., Plant Sci. 166(5), 2004
PMID: IND43633715
Cloning and characterization of a novel Mg(2+)/H(+) exchanger.
Shaul O, Hilgemann DW, de-Almeida-Engler J, Van Montagu M, Inz D, Galili G., EMBO J. 18(14), 1999
PMID: 10406802
Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters.
Song WY, Park J, Mendoza-Cozatl DG, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E., Proc. Natl. Acad. Sci. U.S.A. 107(49), 2010
PMID: 21078981
A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain.
Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF., Proc. Natl. Acad. Sci. U.S.A. 111(44), 2014
PMID: 25331872
Three new arsenic hyperaccumulating ferns.
Srivastava M, Ma LQ, Santos JA., Sci. Total Environ. 364(1-3), 2005
PMID: 16371231
Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes.
Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI., Proc. Natl. Acad. Sci. U.S.A. 97(9), 2000
PMID: 10781110
AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency.
Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H., Plant J. 34(5), 2003
PMID: 12787249
Gene limiting cadmium accumulation in rice.
Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF., Proc. Natl. Acad. Sci. U.S.A. 107(38), 2010
PMID: 20823253
Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens.
Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M, Kaskie M, Ebbs S, Kochian LV, Ma JF., Plant J. 66(5), 2011
PMID: 21457363
Effect of metals on enzyme activity in plants
Van, Plant, Cell & Environment 13(), 1990
Mechanisms to cope with arsenic or cadmium excess in plants.
Verbruggen N, Hermans C, Schat H., Curr. Opin. Plant Biol. 12(3), 2009
PMID: 19501016
Molecular mechanisms of metal hyperaccumulation in plants.
Verbruggen N, Hermans C, Schat H., New Phytol. 181(4), 2009
PMID: 19192189
Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells.
Vert G, Barberon M, Zelazny E, Seguela M, Briat JF, Curie C., Planta 229(6), 2009
PMID: 19252923
Ultrastructural changes of radish leaf exposed to cadmium
Vitoria, Environmental and Experimental Botany 58(), 2006
Ferric ions involved in the flower color development of the Himalayan blue poppy, Meconopsis grandis.
Yoshida K, Kitahara S, Ito D, Kondo T., Phytochemistry 67(10), 2006
PMID: 16678868
Molecular characterization of a rice metal tolerance protein, OsMTP1.
Yuan L, Yang S, Liu B, Zhang M, Wu K., Plant Cell Rep. 31(1), 2011
PMID: 21892614
Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation.
van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ., Plant Physiol. 119(3), 1999
PMID: 10069843
The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata.
Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP., New Phytol. 159(2), 2003
PMID: IND23344012
Plant vacuoles: where did they come from and where are they heading?
Zouhar J, Rojo E., Curr. Opin. Plant Biol. 12(6), 2009
PMID: 19783468
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26729300
PubMed | Europe PMC

Suchen in

Google Scholar