Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress

Sazzad H, Dietz K-J (2016)
Frontiers in Plant Science 7: 548.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 2.89 MB
Abstract / Bemerkung
Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.
Frontiers in Plant Science
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Sazzad H, Dietz K-J. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Frontiers in Plant Science. 2016;7: 548.
Sazzad, H., & Dietz, K. - J. (2016). Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Frontiers in Plant Science, 7, 548. doi:10.3389/fpls.2016.00548
Sazzad, Hossain, and Dietz, Karl-Josef. 2016. “Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress”. Frontiers in Plant Science 7: 548.
Sazzad, H., and Dietz, K. - J. (2016). Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Frontiers in Plant Science 7:548.
Sazzad, H., & Dietz, K.-J., 2016. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Frontiers in Plant Science, 7: 548.
H. Sazzad and K.-J. Dietz, “Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress”, Frontiers in Plant Science, vol. 7, 2016, : 548.
Sazzad, H., Dietz, K.-J.: Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Frontiers in Plant Science. 7, : 548 (2016).
Sazzad, Hossain, and Dietz, Karl-Josef. “Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress”. Frontiers in Plant Science 7 (2016): 548.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

SNF1-Related Protein Kinases SnRK2.4 and SnRK2.10 Modulate ROS Homeostasis in Plant Response to Salt Stress.
Szymańska KP, Polkowska-Kowalczyk L, Lichocka M, Maszkowska J, Dobrowolska G., Int J Mol Sci 20(1), 2019
PMID: 30609769
A cytosolic NAD+-dependent GPDH from maize (ZmGPDH1) is involved in conferring salt and osmotic stress tolerance.
Zhao Y, Liu M, He L, Li X, Wang F, Yan B, Wei J, Zhao C, Li Z, Xu J., BMC Plant Biol 19(1), 2019
PMID: 30626322
iTRAQ-Based Protein Profiling and Biochemical Analysis of Two Contrasting Rice Genotypes Revealed Their Differential Responses to Salt Stress.
Hussain S, Zhu C, Bai Z, Huang J, Zhu L, Cao X, Nanda S, Hussain S, Riaz A, Liang Q, Wang L, Li Y, Jin Q, Zhang J., Int J Mol Sci 20(3), 2019
PMID: 30696055
Responses of Tomato Plants under Saline Stress to Foliar Application of Copper Nanoparticles.
Pérez-Labrada F, López-Vargas ER, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A., Plants (Basel) 8(6), 2019
PMID: 31167436
RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under long-term salt stress.
Sicilia A, Testa G, Santoro DF, Cosentino SL, Lo Piero AR., BMC Plant Biol 19(1), 2019
PMID: 31416418
TaSnRK2.9, a Sucrose Non-fermenting 1-Related Protein Kinase Gene, Positively Regulates Plant Response to Drought and Salt Stress in Transgenic Tobacco.
Feng J, Wang L, Wu Y, Luo Q, Zhang Y, Qiu D, Han J, Su P, Xiong Z, Chang J, Yang G, He G., Front Plant Sci 9(), 2018
PMID: 30693013
Self-protection of cytosolic malate dehydrogenase against oxidative stress in Arabidopsis.
Huang J, Niazi AK, Young D, Rosado LA, Vertommen D, Bodra N, Abdelgawwad MR, Vignols F, Wei B, Wahni K, Bashandy T, Bariat L, Van Breusegem F, Messens J, Reichheld JP., J Exp Bot 69(14), 2018
PMID: 29194485
The effect of mandelonitrile, a recently described salicylic acid precursor, on peach plant response against abiotic and biotic stresses.
Bernal-Vicente A, Cantabella D, Hernández JA, Diaz-Vivancos P., Plant Biol (Stuttg) 20(6), 2018
PMID: 30098127
The Salt-Stress Response of the Transgenic Plum Line J8-1 and Its Interaction with the Salicylic Acid Biosynthetic Pathway from Mandelonitrile.
Bernal-Vicente A, Cantabella D, Petri C, Hernández JA, Diaz-Vivancos P., Int J Mol Sci 19(11), 2018
PMID: 30413110
Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation.
Dreyer A, Dietz KJ., Antioxidants (Basel) 7(11), 2018
PMID: 30469375
Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
Hossain MS, ElSayed AI, Moore M, Dietz KJ., J Exp Bot 68(5), 2017
PMID: 28338762
A Member of the 14-3-3 Gene Family in Brachypodium distachyon, BdGF14d, Confers Salt Tolerance in Transgenic Tobacco Plants.
He Y, Zhang Y, Chen L, Wu C, Luo Q, Zhang F, Wei Q, Li K, Chang J, Yang G, He G., Front Plant Sci 8(), 2017
PMID: 28348575
ROS formation is a differential contributory factor to the fungicidal action of Amphotericin B and Micafungin in Candida albicans.
Guirao-Abad JP, Sánchez-Fresneda R, Alburquerque B, Hernández JA, Argüelles JC., Int J Med Microbiol 307(4-5), 2017
PMID: 28412040
Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet.
Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz KJ., J Exp Bot 68(21-22), 2017
PMID: 29140437

176 References

Daten bereitgestellt von Europe PubMed Central.

Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery.
Acosta-Motos JR, Diaz-Vivancos P, Alvarez S, Fernandez-Garcia N, Sanchez-Blanco MJ, Hernandez JA., Planta 242(4), 2015
PMID: 25976265
Mitochondrial metabolism of reactive oxygen species.
Andreyev AY, Kushnareva YE, Starkov AA., Biochemistry Mosc. 70(2), 2005
PMID: 15807660
Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity
Aono M., Kubo A., Saji H., Tanaka K., Kondo N.., 1993
Ascorbate peroxidase - a hydrogen scavenging enzyme in plants
Asada K.., 1992
Roles of glycine betaine and proline in improving plant abiotic stress resistance
Ashraf M., Foolad M.., 2007
Salinity and oxidative Stress
Azevedo A., Gomes E., Prisco J.., 2008
Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit.
Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K., Physiol Plant 121(2), 2004
PMID: 15153190

Baker A., Graham A.., 2002
Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress.
Banu NA, Hoque A, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y., J. Plant Physiol. 166(2), 2008
PMID: 18471929
ROS as key players in plant stress signalling.
Baxter A, Mittler R, Suzuki N., J. Exp. Bot. 65(5), 2013
PMID: 24253197
Evidence for a respiratory chain in the chloroplast.
Bennoun P., Proc. Natl. Acad. Sci. U.S.A. 79(14), 1982
PMID: 16593210
M. Long term salinity stress in relation to lipid peroxidation, super oxide dismutase activity and proline content of saltsensitive and salt-tolerant wheat cultivars
Borzouei A., Kafi M., Akbari-Ghogdi E., Mousavi-Shalmani null., 2012
Isolation and characterization of plastid terminal oxidase gene from carrot and its relation to carotenoid accumulation
Campos M., Campos C., Cardoso H., Simon P., Oliveira M., Nogales A.., 2015
Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation.
Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M., Plant Cell 11(1), 1999
PMID: 9878632
Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves.
Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viegas RA, Silveira JAG., New Phytol. 163(3), 2004
PMID: IND43642176
Voltammetric detection of superoxide production by photosystem II.
Cleland RE, Grace SC., FEBS Lett. 457(3), 1999
PMID: 10471806
Functions of amine oxidases in plant development and defence.
Cona A, Rea G, Angelini R, Federico R, Tavladoraki P., Trends Plant Sci. 11(2), 2006
PMID: 16406305
Molecular distinction between alternative oxidase from monocots and dicots.
Considine MJ, Holtzapffel RC, Day DA, Whelan J, Millar AH., Plant Physiol. 129(3), 2002
PMID: 12114550
Molecular Genetics of Crassulacean Acid Metabolism.
Cushman JC, Bohnert HJ., Plant Physiol. 113(3), 1997
PMID: 12223634
The role of ABA and MAPK signaling pathways in plant abiotic stress responses.
Danquah A, de Zelicourt A, Colcombet J, Hirt H., Biotechnol. Adv. 32(1), 2013
PMID: 24091291
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
Photorespiration rate in spinach leaves under moderate NaCl stress
Di C., Delene S., Alvino A., Loreto F.., 1999
Mechanisms of oxygen activation in different compartments of plant cells
Elstner E.., 1991
Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses.
Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K., Planta 225(5), 2006
PMID: 17043889
Effect of Chlamydomonas plastid terminal oxidase 1 expressed in tobacco on photosynthetic electron transfer.
Feilke K, Streb P, Cornic G, Perreau F, Kruk J, Krieger-Liszkay A., Plant J. 85(2), 2016
PMID: 26663146
In vitro analysis of the plastid terminal oxidase in photosynthetic electron transport.
Feilke K, Yu Q, Beyer P, Setif P, Krieger-Liszkay A., Biochim. Biophys. Acta 1837(10), 2014
PMID: 25091282
Induction of alternative oxidase chain under salt stress conditions
Ferreira A., Arrabaca J., Vaz-Pinto V., Lima-Costa M.., 2008
Salinity tolerance in halophytes.
Flowers TJ, Colmer TD., New Phytol. 179(4), 2008
PMID: 18565144
Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.
Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L., Plant Physiol. 109(3), 1995
PMID: 8552710
The role of respiration during adaptation of the freshwater cyanobacterium Synechococcus 6311 to salinity.
Fry IV, Huflejt M, Erber WW, Peschek GA, Packer L., Arch. Biochem. Biophys. 244(2), 1986
PMID: 3004347
Limitation of C3-CAM shift in the common ice plant under high irradiance.
Gawronska K, Romanowska E, Miszalski Z, Niewiadomska E., J. Plant Physiol. 170(2), 2012
PMID: 23253482
C4 photosynthesis and water stress.
Ghannoum O., Ann. Bot. 103(4), 2008
PMID: 18552367
A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling.
Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R., Trends Plant Sci. 19(10), 2014
PMID: 25088679
Cell wall-bound malate dehydrogenase from horseradish
Gross G.., 1977
Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase.
Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD., Proc. Natl. Acad. Sci. U.S.A. 90(4), 1993
PMID: 8434026
Clathrin and Membrane Microdomains Cooperatively Regulate RbohD Dynamics and Activity in Arabidopsis.
Hao H, Fan L, Chen T, Li R, Li X, He Q, Botella MA, Lin J., Plant Cell 26(4), 2014
PMID: 24755455
Thioredoxin-h1 reduces and reactivates the oxidized cytosolic malate dehydrogenase dimer in higher plants.
Hara S, Motohashi K, Arisaka F, Romano PG, Hosoya-Matsuda N, Kikuchi N, Fusada N, Hisabori T., J. Biol. Chem. 281(43), 2006
PMID: 16945919
Metabolic implications of stressinduced proline accumulation in plants
Hare P., Cress W.., 1997
Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase.
Hebbelmann I, Selinski J, Wehmeyer C, Goss T, Voss I, Mulo P, Kangasjarvi S, Aro EM, Oelze ML, Dietz KJ, Nunes-Nesi A, Do PT, Fernie AR, Talla SK, Raghavendra AS, Linke V, Scheibe R., J. Exp. Bot. 63(3), 2011
PMID: 22140244
Metabolite exchange between chloroplasts and cytoplasm
Heber U.., 1974
Plastid alternative oxidase (PTOX) promotes oxidative stress when overexpressed in tobacco.
Heyno E, Gross CM, Laureau C, Culcasi M, Pietri S, Krieger-Liszkay A., J. Biol. Chem. 284(45), 2009
PMID: 19740740
Sodium transporters in plants. Diverse genes and physiological functions.
Horie T, Schroeder JI., Plant Physiol. 136(1), 2004
PMID: 15375202
Efficacy of ascorbate-glutathione cycle for scavenging H2O2 in two contrasting rice genotypes during salinity stress. Aust. J
Hossain M., Ismail M., Uddin M., Islam M., Ashrafuzzaman M.., 2013
Plant mitochondria: source and target for nitric oxide.
Igamberdiev AU, Ratcliffe RG, Gupta KJ., Mitochondrion 19 Pt B(), 2014
PMID: 24561220
Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles.
Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK., Plant Physiol. 135(3), 2004
PMID: 15247369
Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana.
Ivanov AG, Rosso D, Savitch LV, Stachula P, Rosembert M, Oquist G, Hurry V, Huner NP., Photosyn. Res. 113(1-3), 2012
PMID: 22843101
Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints
Jaleel C., Riadh K., Gopi R., Manivannan P., Inès J., Al-Juburi H.., 2009
ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis.
Jiang C, Belfield EJ, Mithani A, Visscher A, Ragoussis J, Mott R, Smith JA, Harberd NP., EMBO J. 31(22), 2012
PMID: 23064146
Evidence for the Presence of the Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes of Pea Leaves.
Jimenez A, Hernandez JA, Del Rio LA, Sevilla F., Plant Physiol. 114(1), 1997
PMID: 12223704
Changes in Properties of Barley Leaf Mitochondria Isolated from NaCl-Treated Plants.
Jolivet Y, Pireaux JC, Dizengremel P., Plant Physiol. 94(2), 1990
PMID: 16667760
In vitro characterization of a plastid terminal oxidase (PTOX).
Josse EM, Alcaraz JP, Laboure AM, Kuntz M., Eur. J. Biochem. 270(18), 2003
PMID: 12950262
A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs.
Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C., Plant Cell 10(2), 1998
PMID: 9490748
A new AOX homologous gene OsIM1 from rice (Oryza sativa L.) with an alternative splicing mechanism under salt stress.
Kong J, Gong JM, Zhang ZG, Zhang JS, Chen SY., Theor. Appl. Genet. 107(2), 2003
PMID: 12669200
Singlet oxygen production in photosynthesis.
Krieger-Liszkay A., J. Exp. Bot. 56(411), 2004
PMID: 15310815
Antioxidant functions of carotenoids.
Krinsky NI., Free Radic. Biol. Med. 7(6), 1989
PMID: 2695406
NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis.
Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI., EMBO J. 22(11), 2003
PMID: 12773379
NOX enzymes and the biology of reactive oxygen.
Lambeth JD., Nat. Rev. Immunol. 4(3), 2004
PMID: 15039755
Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation.
Lazaro JJ, Jimenez A, Camejo D, Iglesias-Baena I, Marti Mdel C, Lazaro-Payo A, Barranco-Medina S, Sevilla F., Front Plant Sci 4(), 2013
PMID: 24348485
Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts.
Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY., Plant Cell Rep. 26(5), 2007
PMID: 17268803
Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice ALTERNATIVE OXIDASE 1 genes.
Li CR, Liang DD, Li J, Duan YB, Li H, Yang YC, Qin RY, Li L, Wei PC, Yang JB., Plant Cell Environ. 36(4), 2012
PMID: 22994594
Tissue- and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress
Lin K., Pu S.., 2010
Changes in activities of antioxidant-related enzymes in leaves of resistant and susceptible wheat inoculated with Rhizoctonia cerealis
Liu H., Xin Z., Zhang Z.., 2011
Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation.
Lopez-Huertas E, Corpas FJ, Sandalio LM, Del Rio LA., Biochem. J. 337 ( Pt 3)(), 1999
PMID: 9895298
Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses.
Luo X, Wu J, Li Y, Nan Z, Guo X, Wang Y, Zhang A, Wang Z, Xia G, Tian Y., PLoS ONE 8(1), 2013
PMID: 23335985
A burst of plant NADPH oxidases.
Marino D, Dunand C, Puppo A, Pauly N., Trends Plant Sci. 17(1), 2011
PMID: 22037416
Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves.
Marti MC, Florez-Sarasa I, Camejo D, Ribas-Carbo M, Lazaro JJ, Sevilla F, Jimenez A., J. Exp. Bot. 62(11), 2011
PMID: 21460385
Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum 18
Martinez C., Montillet J., Bresson E., Agnel J., Dai G., Daniel J.., 1998
Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants
Matysik J., Bhalu B., Mohanty P.., 2002
The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli.
Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R., Sci Signal 2(84), 2009
PMID: 19690331
Reactive oxygen species homeostasis and signalling during drought and salinity stresses.
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R., Plant Cell Environ. 33(4), 2009
PMID: 19712065
Behaviour of peroxidases in rice: changes in enzymatic activity and isoforms in relation to salt tolerance
Mittal R., Dubey R.., 1991
Oxidative stress, antioxidants and stress tolerance.
Mittler R., Trends Plant Sci. 7(9), 2002
PMID: 12234732
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Oxidative modifications to cellular components in plants.
Moller IM, Jensen PE, Hansson A., Annu Rev Plant Biol 58(), 2007
PMID: 17288534
Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots.
Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S., Plant Cell 21(8), 2009
PMID: 19654264
C3 – C4 intermediate photosynthesis in plants
Monson R., Edwards G., Ku M.., 1984
Mechanisms of salinity tolerance.
Munns R, Tester M., Annu Rev Plant Biol 59(), 2008
PMID: 18444910
The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology.
Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Wollman FA., Annu Rev Plant Biol 66(), 2015
PMID: 25580838
The roles of reactive oxygen metabolism in drought: not so cut and dried.
Noctor G, Mhamdi A, Foyer CH., Plant Physiol. 164(4), 2014
PMID: 24715539
Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration?
Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH., Ann. Bot. 89 Spec No(), 2002
PMID: 12102510
Peltier G, Cournac L., Annu Rev Plant Biol 53(), 2002
PMID: 12227339
Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem.
Pogany M, von Rad U, Grun S, Dongo A, Pintye A, Simoneau P, Bahnweg G, Kiss L, Barna B, Durner J., Plant Physiol. 151(3), 2009
PMID: 19726575
The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria.
Rasmusson AG, Geisler DA, Moller IM., Mitochondrion 8(1), 2007
PMID: 18033742
Intracellular NHX-type cation/H+ antiporters in plants.
Reguera M, Bassil E, Blumwald E., Mol Plant 7(2), 2013
PMID: 23956073
How reactive oxygen species and proline face stress together.
Ben Rejeb K, Abdelly C, Savoure A., Plant Physiol. Biochem. 80(), 2014
PMID: 24813727
NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana.
Ben Rejeb K, Benzarti M, Debez A, Bailly C, Savoure A, Abdelly C., J. Plant Physiol. 174(), 2014
PMID: 25462961
Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana.
Ben Rejeb K, Lefebvre-De Vos D, Le Disquet I, Leprince AS, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savoure A., New Phytol. 208(4), 2015
PMID: 26180024
World salinization with emphasis on Australia.
Rengasamy P., J. Exp. Bot. 57(5), 2006
PMID: 16510516
The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources
Rios-Gonzalez K., Erdei L., Lips S.., 2002
Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress.
Rodriguez AA, Maiale SJ, Menendez AB, Ruiz OA., J. Exp. Bot. 60(15), 2009
PMID: 19717530
Alternative oxidase: distribution, induction, properties, structure, regulation, and functions.
Rogov AG, Sukhanova EI, Uralskaya LA, Aliverdieva DA, Zvyagilskaya RA., Biochemistry Mosc. 79(13), 2014
PMID: 25749168
IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis.
Rosso D, Ivanov AG, Fu A, Geisler-Lee J, Hendrickson L, Geisler M, Stewart G, Krol M, Hurry V, Rodermel SR, Maxwell DP, Huner NP., Plant Physiol. 142(2), 2006
PMID: 16891546
Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus.
Rubio MC, Bustos-Sanmamed P, Clemente MR, Becana M., New Phytol. 181(4), 2009
PMID: 19140933
Production of reactive oxygen species by plant NADPH oxidases.
Sagi M, Fluhr R., Plant Physiol. 141(2), 2006
PMID: 16760484
Physiology and molecular biology of salinity stress tolerance in plants
Sairam R., Tyagi A.., 2004
Strategies to maintain redox homeostasis during photosynthesis under changing conditions.
Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S., J. Exp. Bot. 56(416), 2005
PMID: 15851411
Reactive oxygen species, oxidative damage, and antioxidative defensemechanism in plants under stressful conditions
Sharma P., Jha A., Dubey R., Pessarakl M.., 2012
Changes in carotenoid composition and photosynthesis in sorghum under high light and salt stresses
Sharma P., Hall D.., 1992
Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana
Smith CA, Melino VJ, Sweetman C, Soole KL., Physiol Plant 137(4), 2009
PMID: IND44289299
Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.)
Srivastava A., Srivastava S., Lokhande V., D'souza S., Suprasanna P.., 2015
Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings
Srivastava S., Dubey R.., 2011
Antioxidant defense in the leaves of C3 and C4 plants under salinity stress
Stepien P., Klobus G.., 2005
Activation of cyclic electron flow by hydrogen peroxide in vivo.
Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Maurino VG, Kramer DM., Proc. Natl. Acad. Sci. U.S.A. 112(17), 2015
PMID: 25870290
ROS and redox signalling in the response of plants to abiotic stress.
Suzuki N, Koussevitzky S, Mittler R, Miller G., Plant Cell Environ. 35(2), 2011
PMID: 21486305
Respiratory burst oxidases: the engines of ROS signaling.
Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R., Curr. Opin. Plant Biol. 14(6), 2011
PMID: 21862390
Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis.
Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L., Plant J. 53(1), 2007
PMID: 17971042
Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray.
Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K., Plant Physiol. 135(3), 2004
PMID: 15247402
Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts
Tanaka Y., Hibino T., Hayashi Y., Tanaka A., Kishitani S., Takabe T.., 1999
Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant.
Trouillard M, Shahbazi M, Moyet L, Rappaport F, Joliot P, Kuntz M, Finazzi G., Biochim. Biophys. Acta 1817(12), 2012
PMID: 22982477
The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants
Tuna A., Kaya C., Dikilitas M., Higgs D.., 2008
Scavenging of reactive oxygen species in NaCl stressed rice (Oryza sativa L.) - Differential response in salt tolerant and sensitive varieties
Vaidyanathan H., Sivakumar P., Chakrabarty R., Thomas G.., 2003
The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants.
Valderrama R, Corpas FJ, Carreras A, Gomez-Rodriguez MV, Chaki M, Pedrajas JR, Fernandez-Ocana A, Del Rio LA, Barroso JB., Plant Cell Environ. 29(7), 2006
PMID: 17080966
Alternative oxidase: a target and regulator of stress responses
Van Aken O, Giraud E, Clifton R, Whelan J., Physiol Plant 137(4), 2009
PMID: IND44289289
Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts.
Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L., Plant Physiol. 112(4), 1996
PMID: 8972606
Emerging concept for the role of photorespiration as an important part of abiotic stress response.
Voss I, Sunil B, Scheibe R, Raghavendra AS., Plant Biol (Stuttg) 15(4), 2013
PMID: 23452019
Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene
Waie B., Rajam M.., 2003
Involvement of ethylene and hydrogen peroxide in induction of alternative respiratory pathway in salt-treated Arabidopsis calluses.
Wang H, Liang X, Huang J, Zhang D, Lu H, Liu Z, Bi Y., Plant Cell Physiol. 51(10), 2010
PMID: 20801923
Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress
Wang Y., Wisniewski M., Meilan R., Cui M., Webb R., Fuchigami L.., 2005
Photorespiration: metabolic pathways and their role in stress protection.
Wingler A, Lea PJ, Quick WP, Leegood RC., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 355(1402), 2000
PMID: 11128005
Oxidative burst: an early plant response to pathogen infection.
Wojtaszek P., Biochem. J. 322 ( Pt 3)(), 1997
PMID: 9148737
Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis.
Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, Gu Q, Xu DK, Yang Q, Shen WB., Plant J. 66(2), 2011
PMID: 21205037
Distinct responses of the mitochondrial respiratory chain to long- and short-term high-light environments in Arabidopsis thaliana.
Yoshida K, Watanabe CK, Hachiya T, Tholen D, Shibata M, Terashima I, Noguchi K., Plant Cell Environ. 34(4), 2011
PMID: 21251020
Functional and molecular characterization of plastid terminal oxidase from rice (Oryza sativa).
Yu Q, Feilke K, Krieger-Liszkay A, Beyer P., Biochim. Biophys. Acta 1837(8), 2014
PMID: 24780313
Rice growth and yield respond to changes in water depth and salinity stress
Zeng L., Lesch S., Grieve C.., 2003
Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis.
Zhang DW, Yuan S, Xu F, Zhu F, Yuan M, Ye HX, Guo HQ, Lv X, Yin Y, Lin HH., Plant Cell Environ. 39(1), 2014
PMID: 25158995
Comparison analysis of transcripts from the halophyte Thellungiella halophila.
Zhang Y, Lai J, Sun S, Li Y, Liu Y, Liang L, Chen M, Xie Q., J Integr Plant Biol 50(10), 2008
PMID: 19017120
Plant salt tolerance.
Zhu JK., Trends Plant Sci. 6(2), 2001
PMID: 11173290

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 27242807
PubMed | Europe PMC

Suchen in

Google Scholar