Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?

Dietz K-J (2016)
Molecules and Cells 39(1): 20-25.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Photosynthesis is a highly robust process allowing for rapid adjustment to changing environmental conditions. The efficient acclimation depends on balanced redox metabolism and control of reactive oxygen species release which triggers signaling cascades and potentially detrimental oxidation reactions. Thiol peroxidases of the peroxiredoxin and glutathione peroxidase type, and ascorbate peroxidases are the main peroxide detoxifying enzymes of the chloroplast. They use different electron donors and are linked to distinct redox networks. In addition, the peroxiredoxins serve functions in redox regulation and retrograde signaling. The complexity of plastid peroxidases is discussed in context of suborganellar localization, substrate preference, metabolic coupling, protein abundance, activity regulation, interactions, signaling functions, and the conditional requirement for high antioxidant capacity. Thus the review provides an opinion on the advantage of linking detoxification of peroxides to different enzymatic systems and implementing mechanisms for their inactivation to enforce signal propagation within and from the chloroplast.
Stichworte
acorbate peroxidase
Erscheinungsjahr
2016
Zeitschriftentitel
Molecules and Cells
Band
39
Ausgabe
1
Seite(n)
20-25
ISSN
1016-8478, 0219-1032
Page URI
https://pub.uni-bielefeld.de/record/2901816

Zitieren

Dietz K-J. Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast? Molecules and Cells. 2016;39(1):20-25.
Dietz, K. - J. (2016). Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast? Molecules and Cells, 39(1), 20-25. doi:10.14348/molcells.2016.2324
Dietz, Karl-Josef. 2016. “Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?”. Molecules and Cells 39 (1): 20-25.
Dietz, K. - J. (2016). Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast? Molecules and Cells 39, 20-25.
Dietz, K.-J., 2016. Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast? Molecules and Cells, 39(1), p 20-25.
K.-J. Dietz, “Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?”, Molecules and Cells, vol. 39, 2016, pp. 20-25.
Dietz, K.-J.: Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast? Molecules and Cells. 39, 20-25 (2016).
Dietz, Karl-Josef. “Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?”. Molecules and Cells 39.1 (2016): 20-25.

28 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Hydrogen peroxide metabolism and functions in plants.
Smirnoff N, Arnaud D., New Phytol 221(3), 2019
PMID: 30222198
Peroxiredoxins and Redox Signaling in Plants.
Liebthal M, Maynard D, Dietz KJ., Antioxid Redox Signal 28(7), 2018
PMID: 28594234
M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis.
Da Q, Sun T, Wang M, Jin H, Li M, Feng D, Wang J, Wang HB, Liu B., Plant Cell Rep 37(2), 2018
PMID: 29080907
Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome.
Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J., Front Plant Sci 9(), 2018
PMID: 29472941
Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants.
Turkan I, Uzilday B, Dietz KJ, Bräutigam A, Ozgur R., J Exp Bot 69(14), 2018
PMID: 29529246
The Role of Phyto-Melatonin and Related Metabolites in Response to Stress.
Yu Y, Lv Y, Shi Y, Li T, Chen Y, Zhao D, Zhao Z., Molecules 23(8), 2018
PMID: 30060559
Protein Phosphatase (PP2C9) Induces Protein Expression Differentially to Mediate Nitrogen Utilization Efficiency in Rice under Nitrogen-Deficient Condition.
Waqas M, Feng S, Amjad H, Letuma P, Zhan W, Li Z, Fang C, Arafat Y, Khan MU, Tayyab M, Lin W., Int J Mol Sci 19(9), 2018
PMID: 30235789
The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism.
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ., Elife 7(), 2018
PMID: 30311601
Hitting the Wall-Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress.
Novaković L, Guo T, Bacic A, Sampathkumar A, Johnson KL., Plants (Basel) 7(4), 2018
PMID: 30360552
Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation.
Dreyer A, Dietz KJ., Antioxidants (Basel) 7(11), 2018
PMID: 30469375
ROS Are Good.
Mittler R., Trends Plant Sci 22(1), 2017
PMID: 27666517
Reactive oxygen species, abiotic stress and stress combination.
Choudhury FK, Rivero RM, Blumwald E, Mittler R., Plant J 90(5), 2017
PMID: 27801967
Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
Hossain MS, ElSayed AI, Moore M, Dietz KJ., J Exp Bot 68(5), 2017
PMID: 28338762
An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins.
Harper AF, Leuthaeuser JB, Babbitt PC, Morris JH, Ferrin TE, Poole LB, Fetrow JS., PLoS Comput Biol 13(2), 2017
PMID: 28187133
The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.
Müller SM, Wang S, Telman W, Liebthal M, Schnitzer H, Viehhauser A, Sticht C, Delatorre C, Wirtz M, Hell R, Dietz KJ., Plant J 91(6), 2017
PMID: 28644561
Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis.
Da Q, Wang P, Wang M, Sun T, Jin H, Liu B, Wang J, Grimm B, Wang HB., Plant Physiol 175(2), 2017
PMID: 28827456
Overview on Peroxiredoxin.
Rhee SG., Mol Cells 39(1), 2016
PMID: 26831451
Lack of GLYCOLATE OXIDASE1, but Not GLYCOLATE OXIDASE2, Attenuates the Photorespiratory Phenotype of CATALASE2-Deficient Arabidopsis.
Kerchev P, Waszczak C, Lewandowska A, Willems P, Shapiguzov A, Li Z, Alseekh S, Mühlenbock P, Hoeberichts FA, Huang J, Van Der Kelen K, Kangasjärvi J, Fernie AR, De Smet R, Van de Peer Y, Messens J, Van Breusegem F., Plant Physiol 171(3), 2016
PMID: 27225899
Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast.
Dietz KJ, Turkan I, Krieger-Liszkay A., Plant Physiol 171(3), 2016
PMID: 27255485
Recent Progress in Understanding the Role of Reactive Oxygen Species in Plant Cell Signaling.
Dietz KJ, Mittler R, Noctor G., Plant Physiol 171(3), 2016
PMID: 27385820
Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line.
Xu W, Lv H, Zhao M, Li Y, Qi Y, Peng Z, Xia G, Wang M., Sci Rep 6(), 2016
PMID: 27562633
GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling.
Colombo M, Tadini L, Peracchio C, Ferrari R, Pesaresi P., Front Plant Sci 7(), 2016
PMID: 27713755
Reactive Oxygen Species (ROS): Beneficial Companions of Plants' Developmental Processes.
Singh R, Singh S, Parihar P, Mishra RK, Tripathi DK, Singh VP, Chauhan DK, Prasad SM., Front Plant Sci 7(), 2016
PMID: 27729914

55 References

Daten bereitgestellt von Europe PubMed Central.

Photoprotection of photosystems in fluctuating light intensities.
Allahverdiyeva Y, Suorsa M, Tikkanen M, Aro EM., J. Exp. Bot. 66(9), 2014
PMID: 25468932
Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and Rubisco oxygenase
Badger M.R., von S., Ruuska S., Nakano H.., 2000
Human peroxiredoxins 1 and 2 and their interacting protein partners; through structure toward functions of biological complexes
Bertoldi M.., 2016
Non-reductive modulation of chloroplast fructose-1,6-bisphosphatase by 2-Cys peroxiredoxin.
Caporaletti D, D'Alessio AC, Rodriguez-Suarez RJ, Senn AM, Duek PD, Wolosiuk RA., Biochem. Biophys. Res. Commun. 355(3), 2007
PMID: 17307139
The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice.
Caverzan A, Bonifacio A, Carvalho FE, Andrade CM, Passaia G, Schunemann M, Maraschin Fdos S, Martins MO, Teixeira FK, Rauber R, Margis R, Silveira JA, Margis-Pinheiro M., Plant Sci. 214(), 2013
PMID: 24268165
Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status
Cerveau D., Ouahrani D., Marok M.A., Blanchard L., Rey P.., 2016
Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses.
Chang CC, Slesak I, Jorda L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux PM, Parker JE, Karpinska B, Karpinski S., Plant Physiol. 150(2), 2009
PMID: 19363092
The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity.
Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Miginiac-Maslow M., J. Biol. Chem. 278(26), 2003
PMID: 12707279
Arabidopsis chloroplastic glutaredoxin C5 as a model to explore molecular determinants for iron-sulfur cluster binding into glutaredoxins.
Couturier J, Stroher E, Albetel AN, Roret T, Muthuramalingam M, Tarrago L, Seidel T, Tsan P, Jacquot JP, Johnson MK, Dietz KJ, Didierjean C, Rouhier N., J. Biol. Chem. 286(31), 2011
PMID: 21632542
Attenuation of hydrogen peroxide-mediated oxidative stress by Brassica juncea annexin-3 counteracts thiol-specific antioxidant (TSA1) deficiency in Saccharomyces cerevisiae.
Dalal A, Vishwakarma A, Singh NK, Gudla T, Bhattacharyya MK, Padmasree K, Viehhauser A, Dietz KJ, Kirti PB., FEBS Lett. 588(4), 2014
PMID: 24444602
A small family of chloroplast atypical thioredoxins.
Dangoor I, Peled-Zehavi H, Levitan A, Pasand O, Danon A., Plant Physiol. 149(3), 2008
PMID: 19109414
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
Plant glutathione peroxidases
Eshdat Y., Holland D., Faltin Z., BenHayyim G.., 1997
ROS-mediated lipid peroxidation and RES-activated signaling.
Farmer EE, Mueller MJ., Annu Rev Plant Biol 64(), 2013
PMID: 23451784
AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins.
Ferro M, Brugiere S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N., Mol. Cell Proteomics 9(6), 2010
PMID: 20061580
The impact of thiol peroxidases on redox regulation.
Flohe L., Free Radic. Res. (), 2015
PMID: 26228906
Plastid alternative oxidase (PTOX) promotes oxidative stress when overexpressed in tobacco.
Heyno E, Gross CM, Laureau C, Culcasi M, Pietri S, Krieger-Liszkay A., J. Biol. Chem. 284(45), 2009
PMID: 19740740
Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function.
Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong GW, Yun DJ, Rhee SG, Cho MJ, Lee SY., Cell 117(5), 2004
PMID: 15163410
Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses.
Kangasjarvi S, Lepisto A, Hannikainen K, Piippo M, Luomala EM, Aro EM, Rintamaki E., Biochem. J. 412(2), 2008
PMID: 18318659
Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure.
Konig J, Lotte K, Plessow R, Brockhinke A, Baier M, Dietz KJ., J. Biol. Chem. 278(27), 2003
PMID: 12702727
Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets.
Konig J, Muthuramalingam M, Dietz KJ., Curr. Opin. Plant Biol. 15(3), 2012
PMID: 22226570
The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone.
Konig J, Galliardt H, Jutte P, Schaper S, Dittmann L, Dietz KJ., J. Exp. Bot. 64(11), 2013
PMID: 23828546
Photosystem II cycle and alternative electron flow in leaves.
Laisk A, Eichelmann H, Oja V, Rasulov B, Ramma H., Plant Cell Physiol. 47(7), 2006
PMID: 16774929
Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.
Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ., Plant J. 45(6), 2006
PMID: 16507087
Site-directed mutagenesis substituting cysteine for serine in 2-Cys peroxiredoxin (2-Cys Prx A) of Arabidopsis thaliana effectively improves its peroxidase and chaperone functions.
Lee EM, Lee SS, Tripathi BN, Jung HS, Cao GP, Lee Y, Singh S, Hong SH, Lee KW, Lee SY, Cho JY, Chung BY., Ann. Bot. 116(4), 2015
PMID: 26141131
Redox-dependent conformational dynamics of decameric 2-cysteine peroxiredoxin and its interaction with cyclophilin Cyp20-3
Liebthal M., Strüve M., Li X., Hertle Y., Maynard D., Hellweg T., Viehhauser A., Dietz K.J.., 2016
Molecular and functional characterization of sulfiredoxin homologs from higher plants.
Liu XP, Liu XY, Zhang J, Xia ZL, Liu X, Qin HJ, Wang DW., Cell Res. 16(3), 2006
PMID: 16541127
Function of glutathione peroxidases in legume root nodules.
Matamoros MA, Saiz A, Penuelas M, Bustos-Sanmamed P, Mulet JM, Barja MV, Rouhier N, Moore M, James EK, Dietz KJ, Becana M., J. Exp. Bot. 66(10), 2015
PMID: 25740929
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase
Miyake C., Asada K.., 1996
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical
Nakano Y., Asada K.., 1987
Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses.
Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N., Plant Physiol. 142(4), 2006
PMID: 17071643
The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis
Naranjo B., Mignée C., Krieger-Liszkay A., Hornero-Méndez D., Gallardo-Guerrero L., Cejudo F.J., Lindahl M.., 2016
ATTED-II provides coexpressed gene networks for Arabidopsis.
Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K., Nucleic Acids Res. 37(Database issue), 2008
PMID: 18953027
Antioxidant defence in seedling development of Arabidopsis thaliana
Pena-Ahumada A., Kahmann U., Dietz K.J., Baier M.., 2006
The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome.
Petersson UA, Kieselbach T, Garcia-Cerdan JG, Schroder WP., FEBS Lett. 580(26), 2006
PMID: 17054949
Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.
Pulido P, Spinola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, Gonzalez M, Cejudo FJ., J. Exp. Bot. 61(14), 2010
PMID: 20616155
S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration.
Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M., Plant Cell 19(12), 2007
PMID: 18165327
Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: Nalpha-terminal acetylation of human peroxiredoxin II.
Seo JH, Lim JC, Lee DY, Kim KS, Piszczek G, Nam HW, Kim YS, Ahn T, Yun CH, Kim K, Chock PB, Chae HZ., J. Biol. Chem. 284(20), 2009
PMID: 19286652
Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms.
Shirao M, Kuroki S, Kaneko K, Kinjo Y, Tsuyama M, Forster B, Takahashi S, Badger MR., Plant Cell Physiol. 54(7), 2013
PMID: 23624674
Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis.
Zhai CZ, Zhao L, Yin LJ, Chen M, Wang QY, Li LC, Xu ZS, Ma YZ., PLoS ONE 8(10), 2013
PMID: 24098330
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26810073
PubMed | Europe PMC

Suchen in

Google Scholar