Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging

Gorzolka K, Kölling J, Nattkemper TW, Niehaus K (2016)
PLOS ONE 11(3): e0150208.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.71 MB
Abstract / Bemerkung
MALDI mass spectrometry imaging was performed to localize metabolites during the first seven days of the barley germination. Up to 100 mass signals were detected of which 85 signals were identified as 48 different metabolites with highly tissue-specific localizations. Oligosaccharides were observed in the endosperm and in parts of the developed embryo. Lipids in the endosperm co-localized in dependency on their fatty acid compositions with changes in the distributions of diacyl phosphatidylcholines during germination. 26 potentially antifungal hordatines were detected in the embryo with tissue-specific localizations of their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-temporal patterns in local metabolite compositions, multiple MSI data sets from a time series were analyzed in one batch. This requires a new preprocessing strategy to achieve comparability between data sets as well as a new strategy for unsupervised clustering. The resulting spatial segmentation for each time point sample is visualized in an interactive cluster map and enables simultaneous interactive exploration of all time points. Using this new analysis approach and visualization tool germination-dependent developments of metabolite patterns with single MS position accuracy were discovered. This is the first study that presents metabolite profiling of a cereals’ germination process over time by MALDI MSI with the identification of a large number of peaks of agronomically and industrially important compounds such as oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS cluster analyses for on-tissue metabolite profile mapping revealed important information for the understanding of the germination process, which is of high scientific interest.
Erscheinungsjahr
2016
Zeitschriftentitel
PLOS ONE
Band
11
Ausgabe
3
Art.-Nr.
e0150208
ISSN
1932-6203
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2901413

Zitieren

Gorzolka K, Kölling J, Nattkemper TW, Niehaus K. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging. PLOS ONE. 2016;11(3): e0150208.
Gorzolka, K., Kölling, J., Nattkemper, T. W., & Niehaus, K. (2016). Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging. PLOS ONE, 11(3), e0150208. doi:10.1371/journal.pone.0150208
Gorzolka, Karin, Kölling, Jan, Nattkemper, Tim Wilhelm, and Niehaus, Karsten. 2016. “Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging”. PLOS ONE 11 (3): e0150208.
Gorzolka, K., Kölling, J., Nattkemper, T. W., and Niehaus, K. (2016). Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging. PLOS ONE 11:e0150208.
Gorzolka, K., et al., 2016. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging. PLOS ONE, 11(3): e0150208.
K. Gorzolka, et al., “Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging”, PLOS ONE, vol. 11, 2016, : e0150208.
Gorzolka, K., Kölling, J., Nattkemper, T.W., Niehaus, K.: Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging. PLOS ONE. 11, : e0150208 (2016).
Gorzolka, Karin, Kölling, Jan, Nattkemper, Tim Wilhelm, and Niehaus, Karsten. “Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging”. PLOS ONE 11.3 (2016): e0150208.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:36Z
MD5 Prüfsumme
054e1407be4ea90a69fd4cab4cd15053


7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Metabolic and gene expression hallmarks of seed germination uncovered by sodium butyrate in Medicago truncatula.
Pagano A, de Sousa Araújo S, Macovei A, Dondi D, Lazzaroni S, Balestrazzi A., Plant Cell Environ 42(1), 2019
PMID: 29756644
Detection and visualization of communities in mass spectrometry imaging data.
Wüllems K, Kölling J, Bednarz H, Niehaus K, Hans VH, Nattkemper TW., BMC Bioinformatics 20(1), 2019
PMID: 31164082
High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress.
Sarabia LD, Boughton BA, Rupasinghe T, van de Meene AML, Callahan DL, Hill CB, Roessner U., Metabolomics 14(5), 2018
PMID: 29681790
Mass Spectrometry Based Imaging of Labile Glucosides in Plants.
Bøgeskov Schmidt F, Heskes AM, Thinagaran D, Lindberg Møller B, Jørgensen K, Boughton BA., Front Plant Sci 9(), 2018
PMID: 30002667
Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains.
Radchuk V, Riewe D, Peukert M, Matros A, Strickert M, Radchuk R, Weier D, Steinbiß HH, Sreenivasulu N, Weschke W, Weber H., J Exp Bot 68(16), 2017
PMID: 28981782
Automated Morphological and Morphometric Analysis of Mass Spectrometry Imaging Data: Application to Biomarker Discovery.
Picard de Muller G, Ait-Belkacem R, Bonnel D, Longuespée R, Stauber J., J Am Soc Mass Spectrom 28(12), 2017
PMID: 28913742
Towards Better Understanding of Pea Seed Dormancy Using Laser Desorption/Ionization Mass Spectrometry.
Cechová M, Válková M, Hradilová I, Janská A, Soukup A, Smýkal P, Bednář P., Int J Mol Sci 18(10), 2017
PMID: 29065445

71 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Breeding low-glycemic index barley for functional food
Steele K, Caroline Kambona , Edward Dickin , Gary Frost , M.D. Keerio , Robert Brook , Samia Samad , William Thomas ., Field Crops Res. 154(), 2013
PMID: IND500708551
Milling of Canadian oats and barley for functional food ingredients: Oat bran and barley fibre-rich fractions
AUTHOR UNKNOWN, 2014
Proteomes of the barley aleurone layer: A model system for plant signalling and protein secretion.
Finnie C, Andersen B, Shahpiri A, Svensson B., Proteomics 11(9), 2011
PMID: 21433287

AUTHOR UNKNOWN, 2012
Barley seed proteomics from spots to structures.
Finnie C, Svensson B., J Proteomics 72(3), 2008
PMID: 19118654
Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools.
Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U., Plant Physiol. 146(4), 2008
PMID: 18281415
Metabolite fingerprinting of barley whole seeds, endosperms, and embryos during industrial malting.
Gorzolka K, Lissel M, Kessler N, Loch-Ahring S, Niehaus K., J. Biotechnol. 159(3), 2012
PMID: 22465293
Use of mass spectrometry for imaging metabolites in plants.
Lee YJ, Perdian DC, Song Z, Yeung ES, Nikolau BJ., Plant J. 70(1), 2012
PMID: 22449044
Mass spectrometry imaging with high resolution in mass and space.
Rompp A, Spengler B., Histochem. Cell Biol. 139(6), 2013
PMID: 23652571
Mass spectrometry imaging of biomolecular information.
Spengler B., Anal. Chem. 87(1), 2014
PMID: 25490190
Mass spectrometry imaging of plant metabolites--principles and possibilities.
Bjarnholt N, Li B, D'Alvise J, Janfelt C., Nat Prod Rep 31(6), 2014
PMID: 24452137
Mass spectrometry imaging for plant biology: a review.
Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U., Phytochem Rev 15(), 2015
PMID: 27340381
Mass spectrometry imaging for drug distribution studies.
Prideaux B, Stoeckli M., J Proteomics 75(16), 2012
PMID: 22842290
Peptide and protein imaging mass spectrometry in cancer research.
McDonnell LA, Corthals GL, Willems SM, van Remoortere A, van Zeijl RJ, Deelder AM., J Proteomics 73(10), 2010
PMID: 20510389
MALDI imaging mass spectrometry--painting molecular pictures.
Schwamborn K, Caprioli RM., Mol Oncol 4(6), 2010
PMID: 20965799
Application of imaging mass spectrometry for the analysis of Oryza sativa rice.
Zaima N, Goto-Inoue N, Hayasaka T, Setou M., Rapid Commun. Mass Spectrom. 24(18), 2010
PMID: 20814978
Distribution of lysophosphatidylcholine in the endosperm of Oryza sativa rice.
Zaima N, Yoshimura Y, Kawamura Y, Moriyama T., Rapid Commun. Mass Spectrom. 28(13), 2014
PMID: 24861602
Spatially resolved analysis of small molecules by matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI).
Peukert M, Matros A, Lattanzio G, Kaspar S, Abadia J, Mock HP., New Phytol. 193(3), 2011
PMID: 22126099
Robust data processing and normalization strategy for MALDI mass spectrometric imaging.
Fonville JM, Carter C, Cloarec O, Nicholson JK, Lindon JC, Bunch J, Holmes E., Anal. Chem. 84(3), 2012
PMID: 22148759
A two-component model for measurement error in analytical chemistry
AUTHOR UNKNOWN, 1995
MALDIquant: a versatile R package for the analysis of mass spectrometry data.
Gibb S, Strimmer K., Bioinformatics 28(17), 2012
PMID: 22796955
Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments.
Bemis KD, Harry A, Eberlin LS, Ferreira C, van de Ven SM, Mallick P, Stolowitz M, Vitek O., Bioinformatics 31(14), 2015
PMID: 25777525
Current State and Future Challenges of Mass Spectrometry Imaging for Clinical Research
AUTHOR UNKNOWN, 2015
Serial 3D imaging mass spectrometry at its tipping point.
Palmer AD, Alexandrov T., Anal. Chem. 87(8), 2015
PMID: 25817912
Large-scale mass spectrometry imaging investigation of consequences of cortical spreading depression in a transgenic mouse model of migraine.
Carreira RJ, Shyti R, Balluff B, Abdelmoula WM, van Heiningen SH, van Zeijl RJ, Dijkstra J, Ferrari MD, Tolner EA, McDonnell LA, van den Maagdenberg AM., J. Am. Soc. Mass Spectrom. 26(6), 2015
PMID: 25877011
Automatic registration of mass spectrometry imaging data sets to the Allen brain atlas.
Abdelmoula WM, Carreira RJ, Shyti R, Balluff B, van Zeijl RJ, Tolner EA, Lelieveldt BF, van den Maagdenberg AM, McDonnell LA, Dijkstra J., Anal. Chem. 86(8), 2014
PMID: 24661141
Tackling the widespread and critical impact of batch effects in high-throughput data.
Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA., Nat. Rev. Genet. 11(10), 2010
PMID: 20838408
Hyperspectral visualization of mass spectrometry imaging data.
Fonville JM, Carter CL, Pizarro L, Steven RT, Palmer AD, Griffiths RL, Lalor PF, Lindon JC, Nicholson JK, Holmes E, Bunch J., Anal. Chem. 85(3), 2013
PMID: 23249247
The use of random projections for the analysis of mass spectrometry imaging data.
Palmer AD, Bunch J, Styles IB., J. Am. Soc. Mass Spectrom. 26(2), 2014
PMID: 25522725
Spatial segmentation of imaging mass spectrometry data with edge- preserving image denoising and clustering
AUTHOR UNKNOWN, 2010
mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data.
Strohalm M, Kavan D, Novak P, Volny M, Havlicek V., Anal. Chem. 82(11), 2010
PMID: 20465224
METLIN: a metabolite mass spectral database
AUTHOR UNKNOWN, 2005
The NumPy array: a structure for efficient numerical computation
AUTHOR UNKNOWN, 2011

AUTHOR UNKNOWN, 2001

AUTHOR UNKNOWN, 0
Scikit-learn: Machine Learning in Python
AUTHOR UNKNOWN, 2011
WHIDE--a web tool for visual data mining colocation patterns in multivariate bioimages.
Kolling J, Langenkamper D, Abouna S, Khan M, Nattkemper TW., Bioinformatics 28(8), 2012
PMID: 22390938
Robust Normalization Protocols for Multiplexed Fluorescence Bioimage Analysis
AUTHOR UNKNOWN, 2016
Tree Colors: Color Schemes for Tree-Structured Data.
Tennekes M, de Jonge E., IEEE Trans Vis Comput Graph 20(12), 2014
PMID: 26356921

AUTHOR UNKNOWN, 2012
Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI).
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR., Metabolomics 3(3), 2007
PMID: 24039616
Distribution of lipids in embryonic axis, bran-endosperm, and hull fractions of hulless barley and hulless oat grain
AUTHOR UNKNOWN, 1979

AUTHOR UNKNOWN, 2008
Transcripts encoding an oleosin and a dormancy-related protein are present in both the aleurone layer and the embryo of developing barley (Hordeum vulgare L.) seeds
AUTHOR UNKNOWN, 1994
Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry.
Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, Setou M., J. Lipid Res. 50(9), 2009
PMID: 19417221
Enhanced specificity for phosphatidylcholine analysis by positive ion mode matrix-assisted laser desorption/ionization imaging mass spectrometry.
Zaima N, Yoshioka S, Sato Y, Shinano S, Ikeda Y, Moriyama T., Rapid Commun. Mass Spectrom. 28(13), 2014
PMID: 24861594
The antifungal factors in barley. V. Antifungal activity of the hordatines
AUTHOR UNKNOWN, 1970
Elucidation of Chemical Structures of Components Responsible for Beer Aftertaste
AUTHOR UNKNOWN, 2011
Distribution of the hordatines in barley
AUTHOR UNKNOWN, 1978
Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana.
Muroi A, Ishihara A, Tanaka C, Ishizuka A, Takabayashi J, Miyoshi H, Nishioka T., Planta 230(3), 2009
PMID: 19521717
Hydroxycinnamic acid amide metabolism: physiology and biochemistry.
Facchini PJ, Hagel J, Zulak KG., Can. J. Bot. 80(6), 2002
PMID: IND23291013
Acquired immunity of transgenic torenia plants overexpressing agmatine coumaroyltransferase to pathogens and herbivore pests.
Muroi A, Matsui K, Shimoda T, Kihara H, Ozawa R, Ishihara A, Nishihara M, Arimura G., Sci Rep 2(), 2012
PMID: 23008754
Induction of hydroxycinnamic acid amides and tryptophan by jasmonic acid, abscisic acid and osmotic stress in barley leaves
AUTHOR UNKNOWN, 2001
Using collective expert judgements to evaluate quality measures of mass spectrometry images.
Palmer A, Ovchinnikova E, Thune M, Lavigne R, Guevel B, Dyatlov A, Vitek O, Pineau C, Boren M, Alexandrov T., Bioinformatics 31(12), 2015
PMID: 26072506
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26938880
PubMed | Europe PMC

Suchen in

Google Scholar