Mannose 6-phosphate-independent Lysosomal Sorting of Limp-2

Blanz J, Zunke F, Markmann S, Damme M, Braulke T, Saftig P, Schwake M (2015)
Traffic 16(10): 1127-1136.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Blanz, Judith; Zunke, Friederike; Markmann, Sandra; Damme, Markus; Braulke, Thomas; Saftig, Paul; Schwake, MichaelUniBi
Abstract / Bemerkung
The lysosomal integral membrane protein type 2 (LIMP-2/SCARB2) has been described as a mannose 6-phosphate (M6P)-independent trafficking receptor for beta-glucocerebrosidase (GC). Recently, a putative M6P residue in a crystal structure of a recombinantly expressed LIMP-2 ectodomain has been reported. Based on surface plasmon resonance and fluorescence lifetime imaging analyses, it was suggested that the interaction of soluble LIMP-2 with the cation-independent M6P receptor (MPR) results in M6P-dependent targeting of LIMP-2 to lysosomes. As the physiological relevance of this observation was not addressed, we investigated M6P-dependent delivery of LIMP-2 to lysosomes in murine liver and mouse embryonic fibroblasts. We demonstrate that LIMP-2 and GC reach lysosomes independent of the M6P pathway. In fibroblasts lacking either MPRs or the M6P-forming N-acetylglucosamine (GlcNAc)-1-phosphotransferase, LIMP-2 still localizes to lysosomes. Immunoblot analyses also revealed comparable LIMP-2 levels within lysosomes purified from liver of wild-type (wt) and GlcNAc-1-phosphotransferase-defective mice. Heterologous expression of the luminal domain of LIMP-2 in wild-type, LIMP-2-deficient and GlcNAc-1-phosphotransferase-defective cells further established that the M6P modification is dispensable for lysosomal sorting of LIMP-2. Finally, cathepsin Z, a known GlcNAc-1-phosphotransferase substrate, but not LIMP-2, could be precipitated with M6P-specific antibodies. These data prove M6P-independent lysosomal sorting of LIMP-2 and subsequently GC in vivo.
Stichworte
Gaucher disease
Erscheinungsjahr
2015
Zeitschriftentitel
Traffic
Band
16
Ausgabe
10
Seite(n)
1127-1136
ISSN
1398-9219
eISSN
1600-0854
Page URI
https://pub.uni-bielefeld.de/record/2901039

Zitieren

Blanz J, Zunke F, Markmann S, et al. Mannose 6-phosphate-independent Lysosomal Sorting of Limp-2. Traffic. 2015;16(10):1127-1136.
Blanz, J., Zunke, F., Markmann, S., Damme, M., Braulke, T., Saftig, P., & Schwake, M. (2015). Mannose 6-phosphate-independent Lysosomal Sorting of Limp-2. Traffic, 16(10), 1127-1136. doi:10.1111/tra.12313
Blanz, J., Zunke, F., Markmann, S., Damme, M., Braulke, T., Saftig, P., and Schwake, M. (2015). Mannose 6-phosphate-independent Lysosomal Sorting of Limp-2. Traffic 16, 1127-1136.
Blanz, J., et al., 2015. Mannose 6-phosphate-independent Lysosomal Sorting of Limp-2. Traffic, 16(10), p 1127-1136.
J. Blanz, et al., “Mannose 6-phosphate-independent Lysosomal Sorting of Limp-2”, Traffic, vol. 16, 2015, pp. 1127-1136.
Blanz, J., Zunke, F., Markmann, S., Damme, M., Braulke, T., Saftig, P., Schwake, M.: Mannose 6-phosphate-independent Lysosomal Sorting of Limp-2. Traffic. 16, 1127-1136 (2015).
Blanz, Judith, Zunke, Friederike, Markmann, Sandra, Damme, Markus, Braulke, Thomas, Saftig, Paul, and Schwake, Michael. “Mannose 6-phosphate-independent Lysosomal Sorting of Limp-2”. Traffic 16.10 (2015): 1127-1136.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Lysosome biogenesis in health and disease.
Bajaj L, Lotfi P, Pal R, Ronza AD, Sharma J, Sardiello M., J Neurochem 148(5), 2019
PMID: 30092616
Exploring new routes for secretory protein export from the trans-Golgi network.
Pakdel M, von Blume J., Mol Biol Cell 29(3), 2018
PMID: 29382805
Functions of the Dictyostelium LIMP-2 and CD36 homologues in bacteria uptake, phagolysosome biogenesis and host cell defence.
Sattler N, Bosmani C, Barisch C, Guého A, Gopaldass N, Dias M, Leuba F, Bruckert F, Cosson P, Soldati T., J Cell Sci 131(17), 2018
PMID: 30054386
Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects.
Rujano MA, Cannata Serio M, Panasyuk G, Péanne R, Reunert J, Rymen D, Hauser V, Park JH, Freisinger P, Souche E, Guida MC, Maier EM, Wada Y, Jäger S, Krogan NJ, Kretz O, Nobre S, Garcia P, Quelhas D, Bird TD, Raskind WH, Schwake M, Duvet S, Foulquier F, Matthijs G, Marquardt T, Simons M., J Exp Med 214(12), 2017
PMID: 29127204
Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies.
Conrad KS, Cheng TW, Ysselstein D, Heybrock S, Hoth LR, Chrunyk BA, Am Ende CW, Krainc D, Schwake M, Saftig P, Liu S, Qiu X, Ehlers MD., Nat Commun 8(1), 2017
PMID: 29199275
Lysosomal Dysfunction and α-Synuclein Aggregation in Parkinson's Disease: Diagnostic Links.
Moors T, Paciotti S, Chiasserini D, Calabresi P, Parnetti L, Beccari T, van de Berg WD., Mov Disord 31(6), 2016
PMID: 26923732
Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2.
Zunke F, Andresen L, Wesseler S, Groth J, Arnold P, Rothaug M, Mazzulli JR, Krainc D, Blanz J, Saftig P, Schwake M., Proc Natl Acad Sci U S A 113(14), 2016
PMID: 27001828
Lysosomal and vacuolar sorting: not so different after all!
de Marcos Lousa C, Denecke J., Biochem Soc Trans 44(3), 2016
PMID: 27284057
Leishmania amazonensis Engages CD36 to Drive Parasitophorous Vacuole Maturation.
Okuda K, Tong M, Dempsey B, Moore KJ, Gazzinelli RT, Silverman N., PLoS Pathog 12(6), 2016
PMID: 27280707

43 References

Daten bereitgestellt von Europe PubMed Central.

Sorting of lysosomal proteins.
Braulke T, Bonifacino JS., Biochim. Biophys. Acta 1793(4), 2008
PMID: 19046998
Mutant enzymatic and cytological phenotypes in cultured human fibroblasts.
Leroy JG, Demars RI., Science 157(3790), 1967
PMID: 17842782
Characterization of glucocerebrosidase in peripheral blood cells and cultured blastoid cells.
Aerts JM, Heikoop J, van Weely S, Donker-Koopman WE, Barranger JA, Tager JM, Schram AW., Exp. Cell Res. 177(2), 1988
PMID: 3391250
LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase.
Reczek D, Schwake M, Schroder J, Hughes H, Blanz J, Jin X, Brondyk W, Van Patten S, Edmunds T, Saftig P., Cell 131(4), 2007
PMID: 18022370
Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36.
Neculai D, Schwake M, Ravichandran M, Zunke F, Collins RF, Peters J, Neculai M, Plumb J, Loppnau P, Pizarro JC, Seitova A, Trimble WS, Saftig P, Grinstein S, Dhe-Paganon S., Nature 504(7478), 2013
PMID: 24162852
Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis.
Berkovic SF, Dibbens LM, Oshlack A, Silver JD, Katerelos M, Vears DF, Lullmann-Rauch R, Blanz J, Zhang KW, Stankovich J, Kalnins RM, Dowling JP, Andermann E, Andermann F, Faldini E, D'Hooge R, Vadlamudi L, Macdonell RA, Hodgson BL, Bayly MA, Savige J, Mulley JC, Smyth GK, Power DA, Saftig P, Bahlo M., Am. J. Hum. Genet. 82(3), 2008
PMID: 18308289
SCARB2 mutations in progressive myoclonus epilepsy (PME) without renal failure.
Dibbens LM, Michelucci R, Gambardella A, Andermann F, Rubboli G, Bayly MA, Joensuu T, Vears DF, Franceschetti S, Canafoglia L, Wallace R, Bassuk AG, Power DA, Tassinari CA, Andermann E, Lehesjoki AE, Berkovic SF., Ann. Neurol. 66(4), 2009
PMID: 19847901
Scavenger receptor B2 is a cellular receptor for enterovirus 71.
Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, Koike S., Nat. Med. 15(7), 2009
PMID: 19543282
Lysosome sorting of β-glucocerebrosidase by LIMP-2 is targeted by the mannose 6-phosphate receptor.
Zhao Y, Ren J, Padilla-Parra S, Fry EE, Stuart DI., Nat Commun 5(), 2014
PMID: 25027712
Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice.
Kollmann K, Damme M, Markmann S, Morelle W, Schweizer M, Hermans-Borgmeyer I, Rochert AK, Pohl S, Lubke T, Michalski JC, Kakela R, Walkley SU, Braulke T., Brain 135(Pt 9), 2012
PMID: 22961545
GISP: a novel brain-specific protein that promotes surface expression and function of GABA(B) receptors.
Kantamneni S, Correa SA, Hodgkinson GK, Meyer G, Vinh NN, Henley JM, Nishimune A., J. Neurochem. 100(4), 2007
PMID: 17241134
[Effect of the injection of Triton WR 1339 on the hepatic lysosomes of the rat.]
WATTIAUX R, WIBO M, BAUDHUIN P., Arch. Int. Physiol. Biochim. 71(), 1963
PMID: 13999241
Molecular characterization of arylsulfatase G: expression, processing, glycosylation, transport, and activity.
Kowalewski B, Lubke T, Kollmann K, Braulke T, Reinheckel T, Dierks T, Damme M., J. Biol. Chem. 289(40), 2014
PMID: 25135642
Identification of HE1 as the second gene of Niemann-Pick C disease.
Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R, Jadot M, Lobel P., Science 290(5500), 2000
PMID: 11125141
Mannose 6-phosphate receptors, Niemann-Pick C2 protein, and lysosomal cholesterol accumulation.
Willenborg M, Schmidt CK, Braun P, Landgrebe J, von Figura K, Saftig P, Eskelinen EL., J. Lipid Res. 46(12), 2005
PMID: 16177447
Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II.
Kollmann K, Pestka JM, Kuhn SC, Schone E, Schweizer M, Karkmann K, Otomo T, Catala-Lehnen P, Failla AV, Marshall RP, Krause M, Santer R, Amling M, Braulke T, Schinke T., EMBO Mol Med 5(12), 2013
PMID: 24127423
Lrp1/LDL Receptor Play Critical Roles in Mannose 6-Phosphate-Independent Lysosomal Enzyme Targeting.
Markmann S, Thelen M, Cornils K, Schweizer M, Brocke-Ahmadinejad N, Willnow T, Heeren J, Gieselmann V, Braulke T, Kollmann K., Traffic 16(7), 2015
PMID: 25786328
Mannose 6 dephosphorylation of lysosomal proteins mediated by acid phosphatases Acp2 and Acp5.
Makrypidi G, Damme M, Muller-Loennies S, Trusch M, Schmidt B, Schluter H, Heeren J, Lubke T, Saftig P, Braulke T., Mol. Cell. Biol. 32(4), 2011
PMID: 22158965
Extending the mannose 6-phosphate glycoproteome by high resolution/accuracy mass spectrometry analysis of control and acid phosphatase 5-deficient mice.
Sleat DE, Sun P, Wiseman JA, Huang L, El-Banna M, Zheng H, Moore DF, Lobel P., Mol. Cell Proteomics 12(7), 2013
PMID: 23478313
In vitro binding study of adaptor protein complex (AP-1) to lysosomal targeting motif (LI-motif).
Fujita H, Saeki M, Yasunaga K, Ueda T, Imoto T, Himeno M., Biochem. Biophys. Res. Commun. 255(1), 1999
PMID: 10082654
Two phosphatidylinositol 4-kinases control lysosomal delivery of the Gaucher disease enzyme, β-glucocerebrosidase.
Jovic M, Kean MJ, Szentpetery Z, Polevoy G, Gingras AC, Brill JA, Balla T., Mol. Biol. Cell 23(8), 2012
PMID: 22337770
Direct demonstration of binding of a lysosomal enzyme, alpha-L-iduronidase, to receptors on cultured fibroblasts.
Rome LH, Weissmann B, Neufeld EF., Proc. Natl. Acad. Sci. U.S.A. 76(5), 1979
PMID: 287076
Lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) is a substrate of cathepsin-F, a cysteine protease mutated in type-B-Kufs-disease.
Peters J, Rittger A, Weisner R, Knabbe J, Zunke F, Rothaug M, Damme M, Berkovic SF, Blanz J, Saftig P, Schwake M., Biochem. Biophys. Res. Commun. 457(3), 2015
PMID: 25576872
Neuronal localization and association of Niemann Pick C2 protein (HE1/NPC2) with the postsynaptic density.
Ong WY, Sundaram RK, Huang E, Ghoshal S, Kumar U, Pentchev PG, Patel SC., Neuroscience 128(3), 2004
PMID: 15381285

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26219725
PubMed | Europe PMC

Suchen in

Google Scholar