Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells

Schürmann M, Frese N, Beyer A, Heimann P, Widera D, Mönkemöller V, Huser T, Kaltschmidt B, Kaltschmidt C, Gölzhäuser A (2015)
Small 11(43): 5781-5789.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2015
Zeitschriftentitel
Small
Band
11
Ausgabe
43
Seite(n)
5781-5789
ISSN
16136810
eISSN
1613-6829
Page URI
https://pub.uni-bielefeld.de/record/2782370

Zitieren

Schürmann M, Frese N, Beyer A, et al. Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells. Small. 2015;11(43):5781-5789.
Schürmann, M., Frese, N., Beyer, A., Heimann, P., Widera, D., Mönkemöller, V., Huser, T., et al. (2015). Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells. Small, 11(43), 5781-5789. doi:10.1002/smll.201570262
Schürmann, Matthias, Frese, Natalie, Beyer, André, Heimann, Peter, Widera, Darius, Mönkemöller, Viola, Huser, Thomas, Kaltschmidt, Barbara, Kaltschmidt, Christian, and Gölzhäuser, Armin. 2015. “Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells”. Small 11 (43): 5781-5789.
Schürmann, M., Frese, N., Beyer, A., Heimann, P., Widera, D., Mönkemöller, V., Huser, T., Kaltschmidt, B., Kaltschmidt, C., and Gölzhäuser, A. (2015). Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells. Small 11, 5781-5789.
Schürmann, M., et al., 2015. Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells. Small, 11(43), p 5781-5789.
M. Schürmann, et al., “Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells”, Small, vol. 11, 2015, pp. 5781-5789.
Schürmann, M., Frese, N., Beyer, A., Heimann, P., Widera, D., Mönkemöller, V., Huser, T., Kaltschmidt, B., Kaltschmidt, C., Gölzhäuser, A.: Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells. Small. 11, 5781-5789 (2015).
Schürmann, Matthias, Frese, Natalie, Beyer, André, Heimann, Peter, Widera, Darius, Mönkemöller, Viola, Huser, Thomas, Kaltschmidt, Barbara, Kaltschmidt, Christian, and Gölzhäuser, Armin. “Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells”. Small 11.43 (2015): 5781-5789.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A coupled microscopy approach to assess the nano-landscape of weathering.
Lybrand RA, Austin JC, Fedenko J, Gallery RE, Rooney E, Schroeder PA, Zaharescu DG, Qafoku O., Sci Rep 9(1), 2019
PMID: 30926847
Technical feasibility study for production of tailored multielectrode arrays and patterning of arranged neuronal networks.
Schürmann M, Shepheard N, Frese N, Geishendorf K, Sudhoff H, Gölzhäuser A, Rückert U, Kaltschmidt C, Kaltschmidt B, Thomas A., PLoS One 13(2), 2018
PMID: 29474358
Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering.
Wrede O, Reimann Y, Lülsdorf S, Emmrich D, Schneider K, Schmid AJ, Zauser D, Hannappel Y, Beyer A, Schweins R, Gölzhäuser A, Hellweg T, Sottmann T., Sci Rep 8(1), 2018
PMID: 30213960

43 References

Daten bereitgestellt von Europe PubMed Central.

The fluid mosaic model of the structure of cell membranes.
Singer SJ, Nicolson GL., Science 175(4023), 1972
PMID: 4333397
The concept of lipid domains in membranes.
Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD., J. Cell Biol. 94(1), 1982
PMID: 6889603
Digging into caveolae.
Parton RG, Simons K., Science 269(5229), 1995
PMID: 7660120
Membrane organization and lipid rafts.
Simons K, Sampaio JL., Cold Spring Harb Perspect Biol 3(10), 2011
PMID: 21628426
Functional rafts in cell membranes.
Simons K, Ikonen E., Nature 387(6633), 1997
PMID: 9177342
The challenge of lipid rafts.
Pike LJ., J. Lipid Res. 50 Suppl(), 2008
PMID: 18955730
Membrane microdomains in immunoreceptor signaling.
Horejsi V, Hrdinka M., FEBS Lett. 588(15), 2014
PMID: 24911201
Revisiting the fluid mosaic model of membranes.
Jacobson K, Sheets ED, Simson R., Science 268(5216), 1995
PMID: 7770769
Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane.
Sheets ED, Lee GM, Simson R, Jacobson K., Biochemistry 36(41), 1997
PMID: 9376349
Direct observation of the nanoscale dynamics of membrane lipids in a living cell.
Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW., Nature 457(7233), 2008
PMID: 19098897
Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells.
Pralle A, Keller P, Florin EL, Simons K, Horber JK., J. Cell Biol. 148(5), 2000
PMID: 10704449
A novel biotinylated lipid raft reporter for electron microscopic imaging of plasma membrane microdomains.
Krager KJ, Sarkar M, Twait EC, Lill NL, Koland JG., J. Lipid Res. 53(10), 2012
PMID: 22822037
Lipid raft: A floating island of death or survival.
George KS, Wu S., Toxicol. Appl. Pharmacol. 259(3), 2012
PMID: 22289360
Revitalizing membrane rafts: new tools and insights.
Simons K, Gerl MJ., Nat. Rev. Mol. Cell Biol. 11(10), 2010
PMID: 20861879
Lipid rafts: signaling and sorting platforms of cells and their roles in cancer.
Staubach S, Hanisch FG., Expert Rev Proteomics 8(2), 2011
PMID: 21501018
Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts.
Ehehalt R, Keller P, Haass C, Thiele C, Simons K., J. Cell Biol. 160(1), 2003
PMID: 12515826
Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases.
Sebastiao AM, Colino-Oliveira M, Assaife-Lopes N, Dias RB, Ribeiro JA., Neuropharmacology 64(), 2012
PMID: 22820274
Lipid raft disarrangement as a result of neuropathological progresses: a novel strategy for early diagnosis?
Marin R, Rojo JA, Fabelo N, Fernandez CE, Diaz M., Neuroscience 245(), 2013
PMID: 23618758
Lipid rafts and signal transduction.
Simons K, Toomre D., Nat. Rev. Mol. Cell Biol. 1(1), 2000
PMID: 11413487
Membrane domains and the "lipid raft" concept.
Sonnino S, Prinetti A., Curr. Med. Chem. 20(1), 2013
PMID: 23150999
Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution.
Gottfert F, Wurm CA, Mueller V, Berning S, Cordes VC, Honigmann A, Hell SW., Biophys. J. 105(1), 2013
PMID: 23823248
Helium ion microscopy for high-resolution visualization of the articular cartilage collagen network.
Vanden Berg-Foels WS, Scipioni L, Huynh C, Wen X., J Microsc 246(2), 2012
PMID: 22416783

Ward, J. Vac. Sci. Technol. B 24(), 2006

Hlavacek, J. Vac. Sci. Technol. B 32(), 2014
Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution.
Joens MS, Huynh C, Kasuboski JM, Ferranti D, Sigal YJ, Zeitvogel F, Obst M, Burkhardt CJ, Curran KP, Chalasani SH, Stern LA, Goetze B, Fitzpatrick JA., Sci Rep 3(), 2013
PMID: 24343236

Greiner, Eur. Cells Mater. 22(), 2011
Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate.
Hauser S, Widera D, Qunneis F, Muller J, Zander C, Greiner J, Strauss C, Luningschror P, Heimann P, Schwarze H, Ebmeyer J, Sudhoff H, Arauzo-Bravo MJ, Greber B, Zaehres H, Scholer H, Kaltschmidt C, Kaltschmidt B., Stem Cells Dev. 21(5), 2012
PMID: 22128806
Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats.
Muller J, Ossig C, Greiner JF, Hauser S, Fauser M, Widera D, Kaltschmidt C, Storch A, Kaltschmidt B., Stem Cells Transl Med 4(1), 2014
PMID: 25479965

Lang, 2013
Structural impact of cations on lipid bilayer models: nanomechanical properties by AFM-force spectroscopy.
Redondo-Morata L, Giannotti MI, Sanz F., Mol. Membr. Biol. 31(1), 2013
PMID: 24341385
Surface topography of membrane domains.
Giocondi MC, Yamamoto D, Lesniewska E, Milhiet PE, Ando T, Le Grimellec C., Biochim. Biophys. Acta 1798(4), 2009
PMID: 19796628
Floating cholera toxin into epithelial cells: functional association with caveolae-like detergent-insoluble membrane microdomains.
Badizadegan K, Wolf AA, Rodighiero C, Jobling M, Hirst TR, Holmes RK, Lencer WI., Int. J. Med. Microbiol. 290(4-5), 2000
PMID: 11111918
Rapid cycling of lipid raft markers between the cell surface and Golgi complex.
Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, Phair RD, Lippincott-Schwartz J., J. Cell Biol. 153(3), 2001
PMID: 11331304
Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins.
Raghupathy R, Anilkumar AA, Polley A, Singh PP, Yadav M, Johnson C, Suryawanshi S, Saikam V, Sawant SD, Panda A, Guo Z, Vishwakarma RA, Rao M, Mayor S., Cell 161(3), 2015
PMID: 25910209
Lipid rafts and membrane dynamics.
Rajendran L, Simons K., J. Cell. Sci. 118(Pt 6), 2005
PMID: 15764592
Membrane structure of caveolae and isolated caveolin-rich vesicles.
Westermann M, Leutbecher H, Meyer HW., Histochem. Cell Biol. 111(1), 1999
PMID: 9930886
Role of caveolae and caveolins in health and disease.
Cohen AW, Hnasko R, Schubert W, Lisanti MP., Physiol. Rev. 84(4), 2004
PMID: 15383654
Lipid rafts: elusive or illusive?
Munro S., Cell 115(4), 2003
PMID: 14622593
Hsc70 is a novel interactor of NF-kappaB p65 in living hippocampal neurons.
Klenke C, Widera D, Engelen T, Muller J, Noll T, Niehaus K, Schmitz ML, Kaltschmidt B, Kaltschmidt C., PLoS ONE 8(6), 2013
PMID: 23762333
Measuring localization performance of super-resolution algorithms on very active samples.
Wolter S, Endesfelder U, van de Linde S, Heilemann M, Sauer M., Opt Express 19(8), 2011
PMID: 21503016
Material in PUB:
Teil dieser Dissertation
Teil dieser Dissertation
Synthesis and analysis of carbon nanomaterials
Frese N (2019)
Bielefeld: Universität Bielefeld.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26436577
PubMed | Europe PMC

Suchen in

Google Scholar