Insect-Inspired Self-Motion Estimation with Dense Flow Fields-An Adaptive Matched Filter Approach
Strübbe S, Stürzl W, Egelhaaf M (2015)
PLoS ONE 10(8): e0128413.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Einrichtung
Abstract / Bemerkung
The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion.
Erscheinungsjahr
2015
Zeitschriftentitel
PLoS ONE
Band
10
Ausgabe
8
Art.-Nr.
e0128413
Urheberrecht / Lizenzen
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2777762
Zitieren
Strübbe S, Stürzl W, Egelhaaf M. Insect-Inspired Self-Motion Estimation with Dense Flow Fields-An Adaptive Matched Filter Approach. PLoS ONE. 2015;10(8): e0128413.
Strübbe, S., Stürzl, W., & Egelhaaf, M. (2015). Insect-Inspired Self-Motion Estimation with Dense Flow Fields-An Adaptive Matched Filter Approach. PLoS ONE, 10(8), e0128413. doi:10.1371/journal.pone.0128413
Strübbe, Simon, Stürzl, Wolfgang, and Egelhaaf, Martin. 2015. “Insect-Inspired Self-Motion Estimation with Dense Flow Fields-An Adaptive Matched Filter Approach”. PLoS ONE 10 (8): e0128413.
Strübbe, S., Stürzl, W., and Egelhaaf, M. (2015). Insect-Inspired Self-Motion Estimation with Dense Flow Fields-An Adaptive Matched Filter Approach. PLoS ONE 10:e0128413.
Strübbe, S., Stürzl, W., & Egelhaaf, M., 2015. Insect-Inspired Self-Motion Estimation with Dense Flow Fields-An Adaptive Matched Filter Approach. PLoS ONE, 10(8): e0128413.
S. Strübbe, W. Stürzl, and M. Egelhaaf, “Insect-Inspired Self-Motion Estimation with Dense Flow Fields-An Adaptive Matched Filter Approach”, PLoS ONE, vol. 10, 2015, : e0128413.
Strübbe, S., Stürzl, W., Egelhaaf, M.: Insect-Inspired Self-Motion Estimation with Dense Flow Fields-An Adaptive Matched Filter Approach. PLoS ONE. 10, : e0128413 (2015).
Strübbe, Simon, Stürzl, Wolfgang, and Egelhaaf, Martin. “Insect-Inspired Self-Motion Estimation with Dense Flow Fields-An Adaptive Matched Filter Approach”. PLoS ONE 10.8 (2015): e0128413.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:33Z
MD5 Prüfsumme
cd59634106be98305f1bb994a721f6f4
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Peripheral Processing Facilitates Optic Flow-Based Depth Perception.
Li J, Lindemann JP, Egelhaaf M., Front Comput Neurosci 10(), 2016
PMID: 27818631
Li J, Lindemann JP, Egelhaaf M., Front Comput Neurosci 10(), 2016
PMID: 27818631
51 References
Daten bereitgestellt von Europe PubMed Central.
In defense of the eight-point algorithm
AUTHOR UNKNOWN, 1997
AUTHOR UNKNOWN, 1997
An efficient solution to the five-point relative pose problem.
Nister D., IEEE Trans Pattern Anal Mach Intell 26(6), 2004
PMID: 18579936
Nister D., IEEE Trans Pattern Anal Mach Intell 26(6), 2004
PMID: 18579936
Self-calibration of a moving camera from point correspondences and fundamental matrices
AUTHOR UNKNOWN, 1997
AUTHOR UNKNOWN, 1997
Lucas-Kanade 20 years on: a unifying framework
AUTHOR UNKNOWN, 2004
AUTHOR UNKNOWN, 2004
AUTHOR UNKNOWN, 1961
Detecting visual motion: theory and models.
Borst A, Egelhaaf M., Rev Oculomot Res 5(), 1993
PMID: 8420555
Borst A, Egelhaaf M., Rev Oculomot Res 5(), 1993
PMID: 8420555
Wide-field, motion-sensitive neurons and matched filters for optic flow fields.
Franz MO, Krapp HG., Biol Cybern 83(3), 2000
PMID: 11007295
Franz MO, Krapp HG., Biol Cybern 83(3), 2000
PMID: 11007295
An introduction to matched filters
AUTHOR UNKNOWN, 1960
AUTHOR UNKNOWN, 1960
Neural action fields for optic flow based navigation: a simulation study of the fly lobula plate network.
Borst A, Weber F., PLoS ONE 6(1), 2011
PMID: 21305019
Borst A, Weber F., PLoS ONE 6(1), 2011
PMID: 21305019
Insect-inspired estimation of egomotion.
Franz MO, Chahl JS, Krapp HG., Neural Comput 16(11), 2004
PMID: 15476600
Franz MO, Chahl JS, Krapp HG., Neural Comput 16(11), 2004
PMID: 15476600
AUTHOR UNKNOWN, 2001
AUTHOR UNKNOWN, 2011
AUTHOR UNKNOWN, 1989
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Neural networks in the cockpit of the fly
AUTHOR UNKNOWN, 2002
AUTHOR UNKNOWN, 2002
AUTHOR UNKNOWN, 2006
Sensory systems and flight stability: what do insects measure and why?
AUTHOR UNKNOWN, 2007
AUTHOR UNKNOWN, 2007
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow.
Chen A, DeAngelis GC, Angelaki DE., J. Neurosci. 30(8), 2010
PMID: 20181599
Chen A, DeAngelis GC, Angelaki DE., J. Neurosci. 30(8), 2010
PMID: 20181599
The processing of object and self-motion in the tectofugal and accessory optic pathways of birds.
Frost BJ, Wylie DR, Wang YC., Vision Res. 30(11), 1990
PMID: 2288083
Frost BJ, Wylie DR, Wang YC., Vision Res. 30(11), 1990
PMID: 2288083
Binocular neurons in the nucleus lentiformis mesencephali in pigeons: responses to translational and rotational optic flowfields.
Wylie DR., Neurosci. Lett. 291(1), 2000
PMID: 10962141
Wylie DR., Neurosci. Lett. 291(1), 2000
PMID: 10962141
AUTHOR UNKNOWN, 1984
Neuronal matched filters for optic flow processing in flying insects
AUTHOR UNKNOWN, 1999
AUTHOR UNKNOWN, 1999
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
AUTHOR UNKNOWN, 1985
AUTHOR UNKNOWN, 1985
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Adaptation of response transients in fly motion vision. I: Experiments
AUTHOR UNKNOWN, 2003
AUTHOR UNKNOWN, 2003
Adaptation of response transients in fly motion vision. II: Model studies
AUTHOR UNKNOWN, 2003
AUTHOR UNKNOWN, 2003
Motion adaptation enhances object-induced neural activity in three-dimensional virtual environment.
Liang P, Kern R, Egelhaaf M., J. Neurosci. 28(44), 2008
PMID: 18971474
Liang P, Kern R, Egelhaaf M., J. Neurosci. 28(44), 2008
PMID: 18971474
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc. Biol. Sci. 276(1673), 2009
PMID: 19656791
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc. Biol. Sci. 276(1673), 2009
PMID: 19656791
AUTHOR UNKNOWN, 2002
Linear combinations of optic flow vectors for estimating self-motion—a real-world test of a neural model
AUTHOR UNKNOWN, 2003
AUTHOR UNKNOWN, 2003
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 1966
AUTHOR UNKNOWN, 2005
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow.
Liang P, Kern R, Kurtz R, Egelhaaf M., J. Neurophysiol. 105(4), 2011
PMID: 21307322
Liang P, Kern R, Kurtz R, Egelhaaf M., J. Neurophysiol. 105(4), 2011
PMID: 21307322
Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motion-sensitive neuron during simulated flight
AUTHOR UNKNOWN, 2015
AUTHOR UNKNOWN, 2015
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Depth, contrast and view-based homing in outdoor scenes.
Sturzl W, Zeil J., Biol Cybern 96(5), 2007
PMID: 17443340
Sturzl W, Zeil J., Biol Cybern 96(5), 2007
PMID: 17443340
Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system.
Sturzl W, Boeddeker N, Dittmar L, Egelhaaf M., Bioinspir Biomim 5(3), 2010
PMID: 20689158
Sturzl W, Boeddeker N, Dittmar L, Egelhaaf M., Bioinspir Biomim 5(3), 2010
PMID: 20689158
AUTHOR UNKNOWN, 2012
Motion as a source of environmental information: a fresh view on biological motion computation by insect brains.
Egelhaaf M, Kern R, Lindemann JP., Front Neural Circuits 8(), 2014
PMID: 25389392
Egelhaaf M, Kern R, Lindemann JP., Front Neural Circuits 8(), 2014
PMID: 25389392
Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis.
Schwegmann A, Lindemann JP, Egelhaaf M., Front Comput Neurosci 8(), 2014
PMID: 25136314
Schwegmann A, Lindemann JP, Egelhaaf M., Front Comput Neurosci 8(), 2014
PMID: 25136314
Visual control of flight speed in honeybees.
Baird E, Srinivasan MV, Zhang S, Cowling A., J. Exp. Biol. 208(Pt 20), 2005
PMID: 16215217
Baird E, Srinivasan MV, Zhang S, Cowling A., J. Exp. Biol. 208(Pt 20), 2005
PMID: 16215217
Minimum viewing angle for visually guided ground speed control in bumblebees.
Baird E, Kornfeldt T, Dacke M., J. Exp. Biol. 213(Pt 10), 2010
PMID: 20435812
Baird E, Kornfeldt T, Dacke M., J. Exp. Biol. 213(Pt 10), 2010
PMID: 20435812
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Range perception through apparent image speed in freely flying honeybees.
Srinivasan MV, Lehrer M, Kirchner WH, Zhang SW., Vis. Neurosci. 6(5), 1991
PMID: 2069903
Srinivasan MV, Lehrer M, Kirchner WH, Zhang SW., Vis. Neurosci. 6(5), 1991
PMID: 2069903
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 26308839
PubMed | Europe PMC
Suchen in