Metric and non-metric proximity transformations at linear costs

Gisbrecht A, Schleif F-M (2015)
Neurocomputing 167: 643-657.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Domain specific (dis-)similarity or proximity measures used e.g. in alignment algorithms of sequence data are popular to analyze complicated data objects and to cover domain specific data properties. Without an underlying vector space these data are given as pairwise (dis-)similarities only. The few available methods for such data focus widely on similarities and do not scale to large datasets. Kernel methods are very effective for metric similarity matrices, also at large scale, but costly transformations are necessary starting with non-metric (dis-) similarities. We propose an integrative combination of Nystrom approximation, potential double centering and eigenvalue correction to obtain valid kernel matrices at linear costs in the number of samples. By the proposed approach effective kernel approaches become accessible. Experiments with several larger (dis-)similarity datasets show that the proposed method achieves much better runtime performance than the standard strategy while keeping competitive model accuracy. The main contribution is an efficient and accurate technique, to convert (potentially non-metric) large scale dissimilarity matrices into approximated positive semi-definite kernel matrices at linear costs. (C) 2015 Elsevier B.V. All rights reserved.
Stichworte
Nystrom; approximation; Linear eigenvalue correction; Dissimilarity learning; Double centering; Indefinite kernel; Pseudo-Euclidean
Erscheinungsjahr
2015
Zeitschriftentitel
Neurocomputing
Band
167
Seite(n)
643-657
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/2772422

Zitieren

Gisbrecht A, Schleif F-M. Metric and non-metric proximity transformations at linear costs. Neurocomputing. 2015;167:643-657.
Gisbrecht, A., & Schleif, F. - M. (2015). Metric and non-metric proximity transformations at linear costs. Neurocomputing, 167, 643-657. doi:10.1016/j.neucom.2015.04.017
Gisbrecht, Andrej, and Schleif, Frank-Michael. 2015. “Metric and non-metric proximity transformations at linear costs”. Neurocomputing 167: 643-657.
Gisbrecht, A., and Schleif, F. - M. (2015). Metric and non-metric proximity transformations at linear costs. Neurocomputing 167, 643-657.
Gisbrecht, A., & Schleif, F.-M., 2015. Metric and non-metric proximity transformations at linear costs. Neurocomputing, 167, p 643-657.
A. Gisbrecht and F.-M. Schleif, “Metric and non-metric proximity transformations at linear costs”, Neurocomputing, vol. 167, 2015, pp. 643-657.
Gisbrecht, A., Schleif, F.-M.: Metric and non-metric proximity transformations at linear costs. Neurocomputing. 167, 643-657 (2015).
Gisbrecht, Andrej, and Schleif, Frank-Michael. “Metric and non-metric proximity transformations at linear costs”. Neurocomputing 167 (2015): 643-657.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar