Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation

Müller C, Birmes FS, Rückert C, Kalinowski J, Fetzner S (2015)
Applied and Environmental Microbiology 81(22): 7720-7729.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Müller, Christine; Birmes, Franziska S.; Rückert, ChristianUniBi ; Kalinowski, JörnUniBi; Fetzner, Susanne
Erscheinungsjahr
2015
Zeitschriftentitel
Applied and Environmental Microbiology
Band
81
Ausgabe
22
Seite(n)
7720-7729
ISSN
0099-2240
Page URI
https://pub.uni-bielefeld.de/record/2771555

Zitieren

Müller C, Birmes FS, Rückert C, Kalinowski J, Fetzner S. Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation. Applied and Environmental Microbiology. 2015;81(22):7720-7729.
Müller, C., Birmes, F. S., Rückert, C., Kalinowski, J., & Fetzner, S. (2015). Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation. Applied and Environmental Microbiology, 81(22), 7720-7729. doi:10.1128/AEM.02145-15
Müller, Christine, Birmes, Franziska S., Rückert, Christian, Kalinowski, Jörn, and Fetzner, Susanne. 2015. “Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation”. Applied and Environmental Microbiology 81 (22): 7720-7729.
Müller, C., Birmes, F. S., Rückert, C., Kalinowski, J., and Fetzner, S. (2015). Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation. Applied and Environmental Microbiology 81, 7720-7729.
Müller, C., et al., 2015. Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation. Applied and Environmental Microbiology, 81(22), p 7720-7729.
C. Müller, et al., “Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation”, Applied and Environmental Microbiology, vol. 81, 2015, pp. 7720-7729.
Müller, C., Birmes, F.S., Rückert, C., Kalinowski, J., Fetzner, S.: Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation. Applied and Environmental Microbiology. 81, 7720-7729 (2015).
Müller, Christine, Birmes, Franziska S., Rückert, Christian, Kalinowski, Jörn, and Fetzner, Susanne. “Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation”. Applied and Environmental Microbiology 81.22 (2015): 7720-7729.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The expanding horizon of alkyl quinolone signalling and communication in polycellular interactomes.
Reen FJ, McGlacken GP, O'Gara F., FEMS Microbiol Lett 365(9), 2018
PMID: 29718276
Mycobacterium abscessus subsp. abscessus Is Capable of Degrading Pseudomonas aeruginosa Quinolone Signals.
Birmes FS, Wolf T, Kohl TA, Rüger K, Bange F, Kalinowski J, Fetzner S., Front Microbiol 8(), 2017
PMID: 28303132

76 References

Daten bereitgestellt von Europe PubMed Central.

Look who's talking: communication and quorum sensing in the bacterial world.
Williams P, Winzer K, Chan WC, Camara M., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 362(1483), 2007
PMID: 17360280
The multiple signaling systems regulating virulence in Pseudomonas aeruginosa.
Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ., Microbiol. Mol. Biol. Rev. 76(1), 2012
PMID: 22390972
The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment.
Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Camara M, Williams P., Chem. Biol. 14(1), 2007
PMID: 17254955
Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa.
Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC., J. Bacteriol. 187(13), 2005
PMID: 15968046
MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands.
Xiao G, Deziel E, He J, Lepine F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, Stachel SE, Rahme LG., Mol. Microbiol. 62(6), 2006
PMID: 17083468
The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids.
Dulcey CE, Dekimpe V, Fauvelle DA, Milot S, Groleau MC, Doucet N, Rahme LG, Lepine F, Deziel E., Chem. Biol. 20(12), 2013
PMID: 24239007
PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system.
Farrow JM 3rd, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC., J. Bacteriol. 190(21), 2008
PMID: 18776012
Homeostatic interplay between bacterial cell-cell signaling and iron in virulence.
Hazan R, He J, Xiao G, Dekimpe V, Apidianakis Y, Lesic B, Astrakas C, Deziel E, Lepine F, Rahme LG., PLoS Pathog. 6(3), 2010
PMID: 20300606
Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts.
Rampioni G, Pustelny C, Fletcher MP, Wright VJ, Bruce M, Rumbaugh KP, Heeb S, Camara M, Williams P., Environ. Microbiol. 12(6), 2010
PMID: 20406282
Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa.
Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C., J. Bacteriol. 184(23), 2002
PMID: 12426334
Quinolones: from antibiotics to autoinducers.
Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M., FEMS Microbiol. Rev. 35(2), 2011
PMID: 20738404
4-Quinolones: smart phones of the microbial world.
Huse H, Whiteley M., Chem. Rev. 111(1), 2010
PMID: 20701272
The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity.
Bredenbruch F, Geffers R, Nimtz M, Buer J, Haussler S., Environ. Microbiol. 8(8), 2006
PMID: 16872396
Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules.
Hooi DS, Bycroft BW, Chhabra SR, Williams P, Pritchard DI., Infect. Immun. 72(11), 2004
PMID: 15501777
Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation.
Skindersoe ME, Zeuthen LH, Brix S, Fink LN, Lazenby J, Whittall C, Williams P, Diggle SP, Froekiaer H, Cooley M, Givskov M., FEMS Immunol. Med. Microbiol. 55(3), 2009
PMID: 19187218
The Pseudomonas quinolone signal (PQS) stimulates chemotaxis of polymorphonuclear neutrophils.
Hansch GM, Prior B, Brenner-Weiss G, Obst U, Overhage J., J Appl Biomater Funct Mater 12(1), 2014
PMID: 24829042
Targeting virulence: a new paradigm for antimicrobial therapy.
Clatworthy AE, Pierson E, Hung DT., Nat. Chem. Biol. 3(9), 2007
PMID: 17710100
Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes.
Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH., Mol. Microbiol. 47(3), 2003
PMID: 12535081
Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1.
Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Camara M, Williams P, Quax WJ., Infect. Immun. 74(3), 2006
PMID: 16495538
PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily.
Wahjudi M, Papaioannou E, Hendrawati O, van Assen AH, van Merkerk R, Cool RH, Poelarends GJ, Quax WJ., Microbiology (Reading, Engl.) 157(Pt 7), 2011
PMID: 21372094
BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones.
Bijtenhoorn P, Schipper C, Hornung C, Quitschau M, Grond S, Weiland N, Streit WR., J. Biotechnol. 155(1), 2011
PMID: 21215778
Involvement of multiple loci in quorum quenching of autoinducer I molecules in the nitrogen-fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234.
Krysciak D, Schmeisser C, Preuss S, Riethausen J, Quitschau M, Grond S, Streit WR., Appl. Environ. Microbiol. 77(15), 2011
PMID: 21642401
Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa.
Schipper C, Hornung C, Bijtenhoorn P, Quitschau M, Grond S, Streit WR., Appl. Environ. Microbiol. 75(1), 2008
PMID: 18997026
Efficacy of AiiM, an N-acylhomoserine lactonase, against Pseudomonas aeruginosa in a mouse model of acute pneumonia.
Migiyama Y, Kaneko Y, Yanagihara K, Morohoshi T, Morinaga Y, Nakamura S, Miyazaki T, Hasegawa H, Izumikawa K, Kakeya H, Kohrogi H, Kohno S., Antimicrob. Agents Chemother. 57(8), 2013
PMID: 23689715
Inhaled lactonase reduces Pseudomonas aeruginosa quorum sensing and mortality in rat pneumonia.
Hraiech S, Hiblot J, Lafleur J, Lepidi H, Papazian L, Rolain JM, Raoult D, Elias M, Silby MW, Bzdrenga J, Bregeon F, Chabriere E., PLoS ONE 9(10), 2014
PMID: 25350373
Functional genetic analysis reveals a 2-Alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria.
Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, Chhabra SR, Camara M, Williams P., Chem. Biol. 13(7), 2006
PMID: 16873018
Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa.
Pustelny C, Albers A, Buldt-Karentzopoulos K, Parschat K, Chhabra SR, Camara M, Williams P, Fetzner S., Chem. Biol. 16(12), 2009
PMID: 20064436
Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a.
Niewerth H, Schuldes J, Parschat K, Kiefer P, Vorholt JA, Daniel R, Fetzner S., BMC Genomics 13(), 2012
PMID: 23039946
Substrate-assisted O2 activation in a cofactor-independent dioxygenase.
Thierbach S, Bui N, Zapp J, Chhabra SR, Kappl R, Fetzner S., Chem. Biol. 21(2), 2014
PMID: 24388758
Conversion of the Pseudomonas aeruginosa Quinolone Signal and Related Alkylhydroxyquinolines by Rhodococcus sp. Strain BG43.
Muller C, Birmes FS, Niewerth H, Fetzner S., Appl. Environ. Microbiol. 80(23), 2014
PMID: 25239889
Complete genome sequence of Rhodococcus erythropolis BG43 (DSM 46869), a degrader of Pseudomonas aeruginosa quorum sensing signal molecules.
Ruckert C, Birmes FS, Muller C, Niewerth H, Winkler A, Fetzner S, Kalinowski J., J. Biotechnol. 211(), 2015
PMID: 26210289
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
Protein production by auto-induction in high density shaking cultures.
Studier FW., Protein Expr. Purif. 41(1), 2005
PMID: 15915565

Sambrook J, Fritsch EF, Maniatis T., 1989
Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule.
Soh EY, Chhabra SR, Halliday N, Heeb S, Muller C, Birmes FS, Fetzner S, Camara M, Chan KG, Williams P., Environ. Microbiol. 17(11), 2015
PMID: 25809238
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Transformation of Pseudomonas putida by electroporation.
Iwasaki K, Uchiyama H, Yagi O, Kurabayashi T, Ishizuka K, Takamura Y., Biosci. Biotechnol. Biochem. 58(5), 1994
PMID: 7764975
Analyzing real-time PCR data by the comparative C(T) method.
Schmittgen TD, Livak KJ., Nat Protoc 3(6), 2008
PMID: 18546601
The spectrophotometric determination of carbon monoxide
Klendshoj NC, Feldstein M, Sprague AL., 1950
Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR.
Toder DS, Gambello MJ, Iglewski BH., Mol. Microbiol. 5(8), 1991
PMID: 1766376
Stability, unfolding, and structural changes of cofactor-free 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase.
Beermann B, Guddorf J, Boehm K, Albers A, Kolkenbrock S, Fetzner S, Hinz HJ., Biochemistry 46(14), 2007
PMID: 17371045
Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold.
Steiner RA, Janssen HJ, Roversi P, Oakley AJ, Fetzner S., Proc. Natl. Acad. Sci. U.S.A. 107(2), 2009
PMID: 20080731

Traut TW., 2008
Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli.
de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B., BMC Biotechnol. 7(), 2007
PMID: 17565681
The role of pyocyanin in Pseudomonas aeruginosa infection.
Lau GW, Hassett DJ, Ran H, Kong F., Trends Mol Med 10(12), 2004
PMID: 15567330
The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa.
Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK., Mol. Microbiol. 61(5), 2006
PMID: 16879411
Siderophore-mediated signaling regulates virulence factor production in Pseudomonasaeruginosa.
Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML., Proc. Natl. Acad. Sci. U.S.A. 99(10), 2002
PMID: 11997446
Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa.
Caiazza NC, Shanks RM, O'Toole GA., J. Bacteriol. 187(21), 2005
PMID: 16237018
Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating.
Read RC, Roberts P, Munro N, Rutman A, Hastie A, Shryock T, Hall R, McDonald-Gibson W, Lund V, Taylor G., J. Appl. Physiol. 72(6), 1992
PMID: 1629083
elastase and its role in infections
Wretlind B, Pavlovskis OR., 1983
Shifting paradigms of nontuberculous mycobacteria in cystic fibrosis.
Qvist T, Pressler T, Hoiby N, Katzenstein TL., Respir. Res. 15(), 2014
PMID: 24725650
Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa.
Kay E, Humair B, Denervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D., J. Bacteriol. 188(16), 2006
PMID: 16885472
Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species.
Sonnleitner E, Haas D., Appl. Microbiol. Biotechnol. 91(1), 2011
PMID: 21607656
The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa.
Frangipani E, Visaggio D, Heeb S, Kaever V, Camara M, Visca P, Imperi F., Environ. Microbiol. 16(3), 2013
PMID: 23796404
Iron uptake regulation in Pseudomonas aeruginosa.
Cornelis P, Matthijs S, Van Oeffelen L., Biometals 22(1), 2009
PMID: 19130263
Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR.
Schuster M, Urbanowski ML, Greenberg EP., Proc. Natl. Acad. Sci. U.S.A. 101(45), 2004
PMID: 15505212
Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process.
Schuster A, Kubicek CP, Friedl MA, Druzhinina IS, Schmoll M., BMC Genomics 8(), 2007
PMID: 18053205
Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication.
Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG., Proc. Natl. Acad. Sci. U.S.A. 101(5), 2004
PMID: 14739337
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26319870
PubMed | Europe PMC

Suchen in

Google Scholar