Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

Meyer K, Köster T, Staiger D (2015)
Biomolecules 5(3): 1717-1740.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.
Erscheinungsjahr
Zeitschriftentitel
Biomolecules
Band
5
Ausgabe
3
Seite(n)
1717-1740
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Meyer K, Köster T, Staiger D. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process. Biomolecules. 2015;5(3):1717-1740.
Meyer, K., Köster, T., & Staiger, D. (2015). Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process. Biomolecules, 5(3), 1717-1740. doi:10.3390/biom5031717
Meyer, K., Köster, T., and Staiger, D. (2015). Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process. Biomolecules 5, 1717-1740.
Meyer, K., Köster, T., & Staiger, D., 2015. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process. Biomolecules, 5(3), p 1717-1740.
K. Meyer, T. Köster, and D. Staiger, “Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process”, Biomolecules, vol. 5, 2015, pp. 1717-1740.
Meyer, K., Köster, T., Staiger, D.: Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process. Biomolecules. 5, 1717-1740 (2015).
Meyer, Katja, Köster, Tino, and Staiger, Dorothee. “Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process”. Biomolecules 5.3 (2015): 1717-1740.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-02-26T06:53:24Z

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Plant Circadian Oscillator.
McClung CR., Biology (Basel) 8(1), 2019
PMID: 30870980
Alternative Splicing as a Regulator of Early Plant Development.
Szakonyi D, Duque P., Front Plant Sci 9(), 2018
PMID: 30158945
RNA-Binding Protein RBP-P Is Required for Glutelin and Prolamine mRNA Localization in Rice Endosperm Cells.
Tian L, Chou HL, Zhang L, Hwang SK, Starkenburg SR, Doroshenk KA, Kumamaru T, Okita TW., Plant Cell 30(10), 2018
PMID: 30190374
Alternative Splicing Plays a Critical Role in Maintaining Mineral Nutrient Homeostasis in Rice (Oryza sativa).
Dong C, He F, Berkowitz O, Liu J, Cao P, Tang M, Shi H, Wang W, Li Q, Shen Z, Whelan J, Zheng L., Plant Cell 30(10), 2018
PMID: 30254029
A Musashi Splice Variant and Its Interaction Partners Influence Temperature Acclimation in Chlamydomonas.
Li W, Flores DC, Füßel J, Euteneuer J, Dathe H, Zou Y, Weisheit W, Wagner V, Petersen J, Mittag M., Plant Physiol 178(4), 2018
PMID: 30301774
Posttranscriptional coordination of splicing and miRNA biogenesis in plants.
Stepien A, Knop K, Dolata J, Taube M, Bajczyk M, Barciszewska-Pacak M, Pacak A, Jarmolowski A, Szweykowska-Kulinska Z., Wiley Interdiscip Rev RNA 8(3), 2017
PMID: 27863087
Trimethylguanosine Synthase1 (TGS1) Is Essential for Chilling Tolerance.
Gao J, Wallis JG, Jewell JB, Browse J., Plant Physiol 174(3), 2017
PMID: 28495891
Multilevel Regulation of Abiotic Stress Responses in Plants.
Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S., Front Plant Sci 8(), 2017
PMID: 29033955
Identification of Coilin Mutants in a Screen for Enhanced Expression of an Alternatively Spliced GFP Reporter Gene in Arabidopsis thaliana.
Kanno T, Lin WD, Fu JL, Wu MT, Yang HW, Lin SS, Matzke AJ, Matzke M., Genetics 203(4), 2016
PMID: 27317682
Tudor staphylococcal nuclease: biochemistry and functions.
Gutierrez-Beltran E, Denisenko TV, Zhivotovsky B, Bozhkov PV., Cell Death Differ 23(11), 2016
PMID: 27612014
Alternative splicing of basic chitinase gene PR3b in the low-nicotine mutants of Nicotiana tabacum L. cv. Burley 21.
Ma H, Wang F, Wang W, Yin G, Zhang D, Ding Y, Timko MP, Zhang H., J Exp Bot 67(19), 2016
PMID: 27664270
Detecting circular RNAs: bioinformatic and experimental challenges.
Szabo L, Salzman J., Nat Rev Genet 17(11), 2016
PMID: 27739534
Identification of Methylosome Components as Negative Regulators of Plant Immunity Using Chemical Genetics.
Huang S, Balgi A, Pan Y, Li M, Zhang X, Du L, Zhou M, Roberge M, Li X., Mol Plant 9(12), 2016
PMID: 27756575
CoSpliceNet: a framework for co-splicing network inference from transcriptomics data.
Aghamirzaie D, Collakova E, Li S, Grene R., BMC Genomics 17(1), 2016
PMID: 27793091

151 References

Daten bereitgestellt von Europe PubMed Central.

Spliced segments at the 5' terminus of adenovirus 2 late mRNA.
Berget SM, Moore C, Sharp PA., Proc. Natl. Acad. Sci. U.S.A. 74(8), 1977
PMID: 269380
An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA.
Chow LT, Gelinas RE, Broker TR, Roberts RJ., Cell 12(1), 1977
PMID: 902310
The spliceosome: design principles of a dynamic RNP machine.
Wahl MC, Will CL, Luhrmann R., Cell 136(4), 2009
PMID: 19239890
Spliceosome structure and function.
Will CL, Luhrmann R., Cold Spring Harb Perspect Biol 3(7), 2011
PMID: 21441581
A day in the life of the spliceosome.
Matera AG, Wang Z., Nat. Rev. Mol. Cell Biol. 15(2), 2014
PMID: 24452469
Spliceosomes.
Chen W, Moore MJ., Curr. Biol. 25(5), 2015
PMID: 25734262
Roles of eukaryotic Lsm proteins in the regulation of mRNA function.
Tharun S., Int Rev Cell Mol Biol 272(), 2009
PMID: 19121818
RNA helicases in splicing.
Cordin O, Beggs JD., RNA Biol 10(1), 2012
PMID: 23229095
Alternative pre-mRNA splicing: the logic of combinatorial control.
Smith CW, Valcarcel J., Trends Biochem. Sci. 25(8), 2000
PMID: 10916158
Expansion of the eukaryotic proteome by alternative splicing.
Nilsen TW, Graveley BR., Nature 463(7280), 2010
PMID: 20110989
Functional diversity of the hnRNPs: past, present and perspectives.
Han SP, Tang YH, Smith R., Biochem. J. 430(3), 2010
PMID: 20795951
A complex network of factors with overlapping affinities represses splicing through intronic elements.
Wang Y, Xiao X, Zhang J, Choudhury R, Robertson A, Li K, Ma M, Burge CB, Wang Z., Nat. Struct. Mol. Biol. 20(1), 2012
PMID: 23241926
An RNA map predicting Nova-dependent splicing regulation.
Ule J, Stefani G, Mele A, Ruggiu M, Wang X, Taneri B, Gaasterland T, Blencowe BJ, Darnell RB., Nature 444(7119), 2006
PMID: 17065982
Alternative splicing and disease.
Tazi J, Bakkour N, Stamm S., Biochim. Biophys. Acta 1792(1), 2008
PMID: 18992329
Alternative splicing and retinal degeneration.
Liu MM, Zack DJ., Clin. Genet. 84(2), 2013
PMID: 23647439
Aberrant alternative splicing is another hallmark of cancer.
Ladomery M., Int J Cell Biol 2013(), 2013
PMID: 24101931
Complexity of the alternative splicing landscape in plants.
Reddy AS, Marquez Y, Kalyna M, Barta A., Plant Cell 25(10), 2013
PMID: 24179125
Genome-wide mapping of alternative splicing in Arabidopsis thaliana.
Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC., Genome Res. 20(1), 2009
PMID: 19858364
Alternative splicing in plants--coming of age.
Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW., Trends Plant Sci. 17(10), 2012
PMID: 22743067
Emerging role for RNA-based regulation in plant immunity.
Staiger D, Korneli C, Lummer M, Navarro L., New Phytol. 197(2), 2012
PMID: 23163405
RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing.
Loraine AE, McCormick S, Estrada A, Patel K, Qin P., Plant Physiol. 162(2), 2013
PMID: 23590974
Shaping the Arabidopsis transcriptome through alternative splicing
Staiger D.., 2015
Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis.
Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M., Genome Res. 22(6), 2012
PMID: 22391557
The expression of a nopaline synthase-human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue.
Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJM., Plant Mol. Biol. 6(5), 1986
PMID: IND87019929
Nuclear pre-mRNA processing in plants: distinct modes of 3'-splice-site selection in plants and animals.
Wiebauer K, Herrero JJ, Filipowicz W., Mol. Cell. Biol. 8(5), 1988
PMID: 3386632
The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator.
Koncz C, Dejong F, Villacorta N, Szakonyi D, Koncz Z., Front Plant Sci 3(), 2012
PMID: 22639636
Pre-mRNA splicing in plants: characterization of Ser/Arg splicing factors.
Lopato S, Mayeda A, Krainer AR, Barta A., Proc. Natl. Acad. Sci. U.S.A. 93(7), 1996
PMID: 8610170
Identification of a plant serine-arginine-rich protein similar to the mammalian splicing factor SF2/ASF.
Lazar G, Schaal T, Maniatis T, Goodman HM., Proc. Natl. Acad. Sci. U.S.A. 92(17), 1995
PMID: 7644475
A role for SR proteins in plant stress responses.
Duque P., Plant Signal Behav 6(1), 2011
PMID: 21258207
Comparative analysis of serine/arginine-rich proteins across 27 eukaryotes: insights into sub-family classification and extent of alternative splicing.
Richardson DN, Rogers MF, Labadorf A, Ben-Hur A, Guo H, Paterson AH, Reddy AS., PLoS ONE 6(9), 2011
PMID: 21935421
Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins.
Kalyna M, Lopato S, Voronin V, Barta A., Nucleic Acids Res. 34(16), 2006
PMID: 16936312
Network of interactions of a novel plant-specific Arg/Ser-rich protein, atRSZ33, with atSC35-like splicing factors.
Lopato S, Forstner C, Kalyna M, Hilscher J, Langhammer U, Indrapichate K, Lorkovic ZJ, Barta A., J. Biol. Chem. 277(42), 2002
PMID: 12176998
atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes.
Lopato S, Kalyna M, Dorner S, Kobayashi R, Krainer AR, Barta A., Genes Dev. 13(8), 1999
PMID: 10215626
A chloroplast retrograde signal regulates nuclear alternative splicing.
Petrillo E, Godoy Herz MA, Fuchs A, Reifer D, Fuller J, Yanovsky MJ, Simpson C, Brown JW, Barta A, Kalyna M, Kornblihtt AR., Science 344(6182), 2014
PMID: 24763593
The Arabidopsis splicing factor SR1 is regulated by alternative splicing.
Lazar G, Goodman HM., Plant Mol. Biol. 42(4), 2000
PMID: 10809003
Characterization of a novel arginine/serine-rich splicing factor in Arabidopsis.
Lopato S, Waigmann E, Barta A., Plant Cell 8(12), 1996
PMID: 8989882
Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis.
Kalyna M, Simpson CG, Syed NH, Lewandowska D, Marquez Y, Kusenda B, Marshall J, Fuller J, Cardle L, McNicol J, Dinh HQ, Barta A, Brown JW., Nucleic Acids Res. 40(6), 2011
PMID: 22127866
Identification of an intronic splicing regulatory element involved in auto-regulation of alternative splicing of SCL33 pre-mRNA.
Thomas J, Palusa SG, Prasad KV, Ali GS, Surabhi GK, Ben-Hur A, Abdel-Ghany SE, Reddy AS., Plant J. 72(6), 2012
PMID: 22913769
Regulation of plant developmental processes by a novel splicing factor.
Ali GS, Palusa SG, Golovkin M, Prasad J, Manley JL, Reddy AS., PLoS ONE 2(5), 2007
PMID: 17534421
Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis.
Filichkin SA, Cumbie JS, Dharmawardhana P, Jaiswal P, Chang JH, Palusa SG, Reddy AS, Megraw M, Mockler TC., Mol Plant 8(2), 2015
PMID: 25680774
Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing.
Day IS, Golovkin M, Palusa SG, Link A, Ali GS, Thomas J, Richardson DN, Reddy AS., Plant J. 71(6), 2012
PMID: 22563826
Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism.
de la Fuente van Bentem S, Anrather D, Roitinger E, Djamei A, Hufnagl T, Barta A, Csaszar E, Dohnal I, Lecourieux D, Hirt H., Nucleic Acids Res. 34(11), 2006
PMID: 16807317
High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates.
Feilner T, Hultschig C, Lee J, Meyer S, Immink RG, Koenig A, Possling A, Seitz H, Beveridge A, Scheel D, Cahill DJ, Lehrach H, Kreutzberger J, Kersten B., Mol. Cell Proteomics 4(10), 2005
PMID: 16009969
Alternative splicing modulation by a LAMMER kinase impinges on developmental and transcriptome expression.
Savaldi-Goldstein S, Aviv D, Davydov O, Fluhr R., Plant Cell 15(4), 2003
PMID: 12671088
Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition.
Izquierdo JM, Majos N, Bonnal S, Martinez C, Castelo R, Guigo R, Bilbao D, Valcarcel J., Mol. Cell 19(4), 2005
PMID: 16109372
A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons.
Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, Shiue L, Ares M Jr, Black DL., Genes Dev. 21(13), 2007
PMID: 17606642
Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini-exon splicing reporter and affect alternative splicing of endogenous genes differentially.
Simpson CG, Lewandowska D, Liney M, Davidson D, Chapman S, Fuller J, McNicol J, Shaw P, Brown JW., New Phytol. 203(2), 2014
PMID: 24749484
A role for an alternative splice variant of PIF6 in the control of Arabidopsis primary seed dormancy.
Penfield S, Josse EM, Halliday KJ., Plant Mol. Biol. 73(1-2), 2009
PMID: 19911288
Functional diversity of the plant glycine-rich proteins superfamily.
Mangeon A, Junqueira RM, Sachetto-Martins G., Plant Signal Behav 5(2), 2010
PMID: 20009520
The circadian system of Arabidopsis thaliana: forward and reverse genetic approaches.
Staiger D, Heintzen C., Chronobiol. Int. 16(1), 1999
PMID: 10023572
Monitoring changes in alternative precursor messenger RNA splicing in multiple gene transcripts.
Simpson CG, Fuller J, Maronova M, Kalyna M, Davidson D, McNicol J, Barta A, Brown JW., Plant J. 53(6), 2007
PMID: 18088312
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Koster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res. 40(22), 2012
PMID: 23042250
The RIPper case: identification of RNA-binding protein targets by RNA immunoprecipitation.
Koster T, Haas M, Staiger D., Methods Mol. Biol. 1158(), 2014
PMID: 24792047
Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7.
Nicaise V, Joe A, Jeong BR, Korneli C, Boutrot F, Westedt I, Staiger D, Alfano JR, Zipfel C., EMBO J. 32(5), 2013
PMID: 23395902
Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.
Hackmann C, Korneli C, Kutyniok M, Koster T, Wiedenlubbert M, Muller C, Staiger D., Plant Cell Environ. 37(3), 2013
PMID: 23961939
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity.
Jeong BR, Lin Y, Joe A, Guo M, Korneli C, Yang H, Wang P, Yu M, Cerny RL, Staiger D, Alfano JR, Xu Y., J. Biol. Chem. 286(50), 2011
PMID: 22013065
Role for LSM genes in the regulation of circadian rhythms.
Perez-Santangelo S, Mancini E, Francey LJ, Schlaen RG, Chernomoretz A, Hogenesch JB, Yanovsky MJ., Proc. Natl. Acad. Sci. U.S.A. 111(42), 2014
PMID: 25288739
Arabidopsis thaliana LSM proteins function in mRNA splicing and degradation.
Golisz A, Sikorski PJ, Kruszka K, Kufel J., Nucleic Acids Res. 41(12), 2013
PMID: 23620288
Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln.
Meister G, Eggert C, Buhler D, Brahms H, Kambach C, Fischer U., Curr. Biol. 11(24), 2001
PMID: 11747828
The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins.
Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G., Mol. Cell. Biol. 21(24), 2001
PMID: 11713266
A methyl transferase links the circadian clock to the regulation of alternative splicing.
Sanchez SE, Petrillo E, Beckwith EJ, Zhang X, Rugnone ML, Hernando CE, Cuevas JC, Godoy Herz MA, Depetris-Chauvin A, Simpson CG, Brown JW, Cerdan PD, Borevitz JO, Mas P, Ceriani MF, Kornblihtt AR, Yanovsky MJ., Nature 468(7320), 2010
PMID: 20962777
Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana.
Hong S, Song HR, Lutz K, Kerstetter RA, Michael TP, McClung CR., Proc. Natl. Acad. Sci. U.S.A. 107(49), 2010
PMID: 21097700
Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing.
Deng X, Gu L, Liu C, Lu T, Lu F, Lu Z, Cui P, Pei Y, Wang B, Hu S, Cao X., Proc. Natl. Acad. Sci. U.S.A. 107(44), 2010
PMID: 20956294
The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing.
Cheng D, Cote J, Shaaban S, Bedford MT., Mol. Cell 25(1), 2007
PMID: 17218272
The Splicing Factor PRP31 Is Involved in Transcriptional Gene Silencing and Stress Response in Arabidopsis.
Du JL, Zhang SW, Huang HW, Cai T, Li L, Chen S, He XJ., Mol Plant 8(7), 2015
PMID: 25684655
LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis.
Gross-Hardt R, Kagi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jurgens G, Grossniklaus U., PLoS Biol. 5(3), 2007
PMID: 17326723
GAMETOPHYTIC FACTOR 1, involved in pre-mRNA splicing, is essential for megagametogenesis and embryogenesis in Arabidopsis.
Liu M, Yuan L, Liu NY, Shi DQ, Liu J, Yang WC., J Integr Plant Biol 51(3), 2009
PMID: 19261069
CLO/GFA1 and ATO are novel regulators of gametic cell fate in plants.
Moll C, von Lyncker L, Zimmermann S, Kagi C, Baumann N, Twell D, Grossniklaus U, Gross-Hardt R., Plant J. 56(6), 2008
PMID: 18702672
Alternative polyadenylation of antisense RNAs and flowering time control.
Hornyik C, Duc C, Rataj K, Terzi LC, Simpson GG., Biochem. Soc. Trans. 38(4), 2010
PMID: 20659007
Structure and function of an RNase H domain at the heart of the spliceosome.
Pena V, Rozov A, Fabrizio P, Luhrmann R, Wahl MC., EMBO J. 27(21), 2008
PMID: 18843295
Prp8 protein: at the heart of the spliceosome.
Grainger RJ, Beggs JD., RNA 11(5), 2005
PMID: 15840809
Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription.
Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dean C., Mol. Cell 54(1), 2014
PMID: 24725596
The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis.
Sugliani M, Brambilla V, Clerkx EJ, Koornneef M, Soppe WJ., Plant Cell 22(6), 2010
PMID: 20525852
Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms.
Palma K, Zhao Q, Cheng YT, Bi D, Monaghan J, Cheng W, Zhang Y, Li X., Genes Dev. 21(12), 2007
PMID: 17575050
Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity.
Monaghan J, Xu F, Gao M, Zhao Q, Palma K, Long C, Chen S, Zhang Y, Li X., PLoS Pathog. 5(7), 2009
PMID: 19629177
Two putative RNA-binding proteins function with unequal genetic redundancy in the MOS4-associated complex.
Monaghan J, Xu F, Xu S, Zhang Y, Li X., Plant Physiol. 154(4), 2010
PMID: 20943852
Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre.
Rasche N, Dybkov O, Schmitzova J, Akyildiz B, Fabrizio P, Luhrmann R., EMBO J. 31(6), 2012
PMID: 22246180
SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis.
Wang X, Wu F, Xie Q, Wang H, Wang Y, Yue Y, Gahura O, Ma S, Liu L, Cao Y, Jiao Y, Puta F, McClung CR, Xu X, Ma L., Plant Cell 24(8), 2012
PMID: 22942380
SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis.
Feng J, Li J, Gao Z, Lu Y, Yu J, Zheng Q, Yan S, Zhang W, He H, Ma L, Zhu Z., Mol Plant 8(7), 2015
PMID: 25617718
Mutation of Arabidopsis spliceosomal timekeeper locus1 causes circadian clock defects.
Jones MA, Williams BA, McNicol J, Simpson CG, Brown JW, Harmer SL., Plant Cell 24(10), 2012
PMID: 23110899
THO2, a core member of the THO/TREX complex, is required for microRNA production in Arabidopsis.
Francisco-Mangilet AG, Karlsson P, Kim MH, Eo HJ, Oh SA, Kim JH, Kulcheski FR, Park SK, Manavella PA., Plant J. 82(6), 2015
PMID: 25976549
Plant-specific SR-related protein atSR45a interacts with spliceosomal proteins in plant nucleus.
Tanabe N, Kimura A, Yoshimura K, Shigeoka S., Plant Mol. Biol. 70(3), 2009
PMID: 19238562
An Rtf2 Domain-Containing Protein Influences Pre-mRNA Splicing and Is Essential for Embryonic Development in Arabidopsis thaliana.
Sasaki T, Kanno T, Liang SC, Chen PY, Liao WW, Lin WD, Matzke AJ, Matzke M., Genetics 200(2), 2015
PMID: 25819795
Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana.
Raczynska KD, Simpson CG, Ciesiolka A, Szewc L, Lewandowska D, McNicol J, Szweykowska-Kulinska Z, Brown JW, Jarmolowski A., Nucleic Acids Res. 38(1), 2009
PMID: 19864257
Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana.
Laubinger S, Sachsenberg T, Zeller G, Busch W, Lohmann JU, Ratsch G, Weigel D., Proc. Natl. Acad. Sci. U.S.A. 105(25), 2008
PMID: 18550839
Biogenesis, turnover, and mode of action of plant microRNAs.
Rogers K, Chen X., Plant Cell 25(7), 2013
PMID: 23881412
Widespread translational inhibition by plant miRNAs and siRNAs.
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O., Science 320(5880), 2008
PMID: 18483398
Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis.
Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B., Proc. Natl. Acad. Sci. U.S.A. 109(31), 2012
PMID: 22802657
Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs.
Kim S, Yang JY, Xu J, Jang IC, Prigge MJ, Chua NH., Plant Cell Physiol. 49(11), 2008
PMID: 18829588
A link between RNA metabolism and silencing affecting Arabidopsis development.
Gregory BD, O'Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H, Millar AH, Ecker JR., Dev. Cell 14(6), 2008
PMID: 18486559
Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1.
Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D., Cell 151(4), 2012
PMID: 23141542
The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis.
Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, Ramachandran V, Li W, Lagrange T, Walker JC, Chen X., Proc. Natl. Acad. Sci. U.S.A. 105(29), 2008
PMID: 18632581
Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing.
Dziembowski A, Ventura AP, Rutz B, Caspary F, Faux C, Halgand F, Laprevote O, Seraphin B., EMBO J. 23(24), 2004
PMID: 15565172
The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana.
Raczynska KD, Stepien A, Kierzkowski D, Kalak M, Bajczyk M, McNicol J, Simpson CG, Szweykowska-Kulinska Z, Brown JW, Jarmolowski A., Nucleic Acids Res. 42(2), 2013
PMID: 24137006
Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis.
Koster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D., Nucleic Acids Res. 42(15), 2014
PMID: 25104024
STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis.
Ben Chaabane S, Liu R, Chinnusamy V, Kwon Y, Park JH, Kim SY, Zhu JK, Yang SW, Lee BH., Nucleic Acids Res. 41(3), 2012
PMID: 23268445
A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8.
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M., Mol. Biol. Rep. 37(2), 2009
PMID: 19672695
Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.
Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW., Cell 149(6), 2012
PMID: 22658674

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26213982
PubMed | Europe PMC

Suchen in

Google Scholar