Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis

Brandenbusch C, Glonke S, Collins J, Hoffrogge R, Grunwald K, Bühler B, Schmidt A, Sadowski G (2015)
Biotechnology and Bioengineering 112(11): 2316-2323.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Brandenbusch, Christoph; Glonke, Sabastian; Collins, Jonathan; Hoffrogge, RaimundUniBi ; Grunwald, Klaudia; Bühler, Bruno; Schmidt, Andreas; Sadowski, Gabriele
Abstract / Bemerkung
The formation of stable emulsions in biphasic biotransformations catalyzed by microbial cells turned out to be a major hurdle for industrial implementation. Recently, a cost-effective and efficient downstream processing approach, using supercritical carbon dioxide (scCO2 ) for both irreversible emulsion destabilization (enabling complete phase separation within minutes of emulsion treatment) and product purification via extraction has been proposed by Brandenbusch et al. (2010). One of the key factors for a further development and scale-up of the approach is the understanding of the mechanism underlying scCO2 -assisted phase separation. A systematic approach was applied within this work to investigate the various factors influencing phase separation during scCO2 treatment (that is pressure, exposure of the cells to CO2 , and changes of cell surface properties). It was shown that cell toxification and cell disrupture are not responsible for emulsion destabilization. Proteins from the aqueous phase partially adsorb to cells present at the aqueous-organic interface, causing hydrophobic cell surface characteristics, and thus contribute to emulsion stabilization. By investigating the change in cell-surface hydrophobicity of these cells during CO2 treatment, it was found that a combination of catastrophic phase inversion and desorption of proteins from the cell surface is responsible for irreversible scCO2 mediated phase separation. These findings are essential for the definition of process windows for scCO2 -assisted phase separation in biphasic whole-cell biocatalysis.
Stichworte
phase separation; Pickering-type emulsion; supercritical carbon dioxide; whole-cell biocatalysis; two-liquid phase system
Erscheinungsjahr
2015
Zeitschriftentitel
Biotechnology and Bioengineering
Band
112
Ausgabe
11
Seite(n)
2316-2323
ISSN
0006-3592
eISSN
1097-0290
Page URI
https://pub.uni-bielefeld.de/record/2763691

Zitieren

Brandenbusch C, Glonke S, Collins J, et al. Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis. Biotechnology and Bioengineering. 2015;112(11):2316-2323.
Brandenbusch, C., Glonke, S., Collins, J., Hoffrogge, R., Grunwald, K., Bühler, B., Schmidt, A., et al. (2015). Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis. Biotechnology and Bioengineering, 112(11), 2316-2323. doi:10.1002/bit.25655
Brandenbusch, C., Glonke, S., Collins, J., Hoffrogge, R., Grunwald, K., Bühler, B., Schmidt, A., and Sadowski, G. (2015). Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis. Biotechnology and Bioengineering 112, 2316-2323.
Brandenbusch, C., et al., 2015. Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis. Biotechnology and Bioengineering, 112(11), p 2316-2323.
C. Brandenbusch, et al., “Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis”, Biotechnology and Bioengineering, vol. 112, 2015, pp. 2316-2323.
Brandenbusch, C., Glonke, S., Collins, J., Hoffrogge, R., Grunwald, K., Bühler, B., Schmidt, A., Sadowski, G.: Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis. Biotechnology and Bioengineering. 112, 2316-2323 (2015).
Brandenbusch, Christoph, Glonke, Sabastian, Collins, Jonathan, Hoffrogge, Raimund, Grunwald, Klaudia, Bühler, Bruno, Schmidt, Andreas, and Sadowski, Gabriele. “Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis”. Biotechnology and Bioengineering 112.11 (2015): 2316-2323.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing.
Kadisch M, Schmid A, Bühler B, Bühler B., J Ind Microbiol Biotechnol 44(3), 2017
PMID: 28012009

46 References

Daten bereitgestellt von Europe PubMed Central.

Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases.
Alphand V, Carrea G, Wohlgemuth R, Furstoss R, Woodley JM., Trends Biotechnol. 21(7), 2003
PMID: 12837617
Influence of pressure and solvency on the separation of water-in-crude-oil emulsions from the North Sea
Auflem, J Pet Sci Eng 31(1), 2001
Inactivation of Escherichia coli by carbon dioxide under pressure.
Ballestra P, Da Silva AA, Cuq JL., J. Food Sci. 61(4), 1996
PMID: IND20531691
Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica
Binks, Langmuir 16(6), 2000
Thermodynamische Untersuchungen zur Produktaufarbeitung von Emulsionen aus einem biokatalytischen 2-Phasenprozess mit überkritischem CO2 [Diploma Thesis]
Brandenbusch, Dortmund: Technische Universität Dortmund (), 2007
Downstream processing in biphasic biocatalysis by means of scCO2 [Ph.D. Thesis]
Brandenbusch, Dortmund: Technische Universität Dortmund. (), 2012
Efficient phase separation and product recovery in organic-aqueous bioprocessing using supercritical carbon dioxide.
Brandenbusch C, Buhler B, Hoffmann P, Sadowski G, Schmid A., Biotechnol. Bioeng. 107(4), 2010
PMID: 20589843
Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization.
Buhler B, Schmid A., J. Biotechnol. 113(1-3), 2004
PMID: 15380656
Characterization and application of xylene monooxygenase for multistep biocatalysis.
Buhler B, Witholt B, Hauer B, Schmid A., Appl. Environ. Microbiol. 68(2), 2002
PMID: 11823191
The dynamic influence of cells on the formation of stable emulsions in organic-aqueous biotransformations.
Collins J, Grund M, Brandenbusch C, Sadowski G, Schmid A, Buhler B., J. Ind. Microbiol. Biotechnol. 42(7), 2015
PMID: 25916765
A possible mechanism of stabilization of emulsions by solid particles
Denkov, J Colloid Interface Sci 150(2), 1992
Inactivation of food microorganisms by high-pressure carbon dioxide treatment with or without explosive decompression.
Enomoto A, Nakamura K, Nagai K, Hashimoto T, Hakoda M., Biosci. Biotechnol. Biochem. 61(7), 1997
PMID: 9255977
Bursting bacteria by release of gas pressure.
FRASER D., Nature 167(4236), 1951
PMID: 14796728
ROSE Process improves resid feed
Gearhart, Hydrocarbon Process 55(5), 1976
Inactivation of microorganisms by carbon dioxide under pressure.
Haas GJ, Prescott HEJr, Dudley E, Dik R, Hintlian C, Keane L., Journal of food safety. 9(4), 1989
PMID: IND90004082
Fixatives and fixation: a review.
Hopwood D., Histochem. J. 1(4), 1969
PMID: 4113286
The influence of pressure and temperature of compressed CO2 on the survival of yeast cells.
Isenschmid A, Marison IW, von Stockar U., J. Biotechnol. 39(3), 1995
PMID: 7766403
Sterilization of microorganisms with supercritical carbon-dioxide
Kamihira, Agric Biol Chem 51(2), 1987

Kollmer, 1997
Systematic optimization of a biocatalytic two-liquid phase oxyfunctionalization process guided by ecological and economic assessment
Kuhn, Green Chem 14(3), 2012
Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process
Kuhn, Green Chem 12(5), 2010

Lang, 2013
Whole-cell biocatalysis in organic media
Leon, Enzyme Microb Technol 23(7-8), 1998
Two-liquid-phase biocatalytic reactions
Lilly, J Chem Technol Biotechnol 32(1), 1982
An improved method for disruption of microbial cells with pressurized carbon dioxide.
Lin HM, Yang Z, Chen LF., Biotechnol. Prog. 8(2), 1992
PMID: 1368008

Little, 1990

Mathys, 1997
A multipurpose cloning system based on single-stranded DNA bacteriophage M13
Messing, Recomb DNA Tech Bull 2(), 1979
Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase.
Panke S, Held M, Wubbolts MG, Witholt B, Schmid A., Biotechnol. Bioeng. 80(1), 2002
PMID: 12209784
CXCVI. -Emulsions
Pickering, J Chem Soc Trans 91(), 1907
Solvent selection for whole cell biotransformations in organic media.
Salter GJ, Kell DB., Crit. Rev. Biotechnol. 15(2), 1995
PMID: 7641292
Microbial safety of supercritical carbon dioxide processes.
Sirisee U, Hsieh F, Huff HE., Journal of food processing and preservation. 22(5), 1998
PMID: IND22002760

Sjöblom, 2007
Factors Controlling the Stability of Colloid-Stabilized Emulsions. An Experimental Investigation
Tambe, J Colloid Interface Sci 157(1), 1993
Integrated organic-aqueous biocatalysis and product recovery for quinaldine hydroxylation catalyzed by living recombinant Pseudomonas putida.
Utkur FO, Thanh Tran T, Collins J, Brandenbusch C, Sadowski G, Schmid A, Buhler B., J. Ind. Microbiol. Biotechnol. 39(7), 2012
PMID: 22383177
Practical issues in the application of oxygenases.
van Beilen JB, Duetz WA, Schmid A, Witholt B., Trends Biotechnol. 21(4), 2003
PMID: 12679065
Two-liquid-phase bioreactors.
Van Sonsbeek HM, Beeftink HH, Tramper J., Enzyme Microb. Technol. 15(9), 1993
PMID: 7764006
The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier.
Walzer G, Rosenberg E, Ron EZ., Environ. Microbiol. 8(6), 2006
PMID: 16689723
A novel process for demulsification of water-in-crude oil emulsions by dense carbon dioxide
Zaki, Ind Eng Chem Res 42(25), 2003

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26012371
PubMed | Europe PMC

Suchen in

Google Scholar