Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production - Strategies for the elimination of feedback inhibition

Kulis-Horn R, Persicke M, Kalinowski J (2015)
Journal of Biotechnology 206: 26-37.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
L-Histidine biosynthesis in Corynebacterium glutamicum is mainly regulated by L-histidine feedback inhibition of the ATP-phosphoribosyltransferase HisG that catalyzes the first step of the pathway. The elimination of this feedback inhibition is the first and most important step in the development of an L-histidine production strain. For this purpose, a combined approach of random mutagenesis and rational enzyme redesign was performed. Mutants spontaneously resistant to the toxic L-histidine analog beta-(2-thiazolyl)-DL-alanine (2-TA) revealed novel and unpredicted mutations in the C-terminal regulatory domain of HisG resulting in increased feedback resistance. Moreover, deletion of the entire C-terminal regulatory domain in combination with the gain of function mutation S143F in the catalytic domain resulted in a HisG variant that is still highly active even at L-histidine concentrations close to the solubility limit. Notably, the S143F mutation on its own provokes feedback deregulation, revealing for the first time an amino acid residue in the catalytic domain of HisG that is involved in the feedback regulatory mechanism. In addition, we investigated the effect of hisG mutations for L-histidine production on different levels. This comprised the analysis of different expression systems, including plasmid- and chromosome-based overexpression, as well as the importance of codon choice for HisG mutations. The combination of domain deletions, single amino acid exchanges, codon choice, and chromosome-based overexpression resulted in production strains accumulating around 0.5 gl(-1) L-histidine, demonstrating the added value of the different approaches. (C) 2015 Published by Elsevier B.V.
Stichworte
ATP-phosphoribosyl transferase; L-Histidine biosynthesis; Feedback; Synonymous mutation; Domain deletion; deregulation; Chromosomal; overexpression
Erscheinungsjahr
2015
Zeitschriftentitel
Journal of Biotechnology
Band
206
Seite(n)
26-37
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/2759737

Zitieren

Kulis-Horn R, Persicke M, Kalinowski J. Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production - Strategies for the elimination of feedback inhibition. Journal of Biotechnology. 2015;206:26-37.
Kulis-Horn, R., Persicke, M., & Kalinowski, J. (2015). Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production - Strategies for the elimination of feedback inhibition. Journal of Biotechnology, 206, 26-37. doi:10.1016/j.jbiotec.2015.04.001
Kulis-Horn, Robert, Persicke, Marcus, and Kalinowski, Jörn. 2015. “Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production - Strategies for the elimination of feedback inhibition”. Journal of Biotechnology 206: 26-37.
Kulis-Horn, R., Persicke, M., and Kalinowski, J. (2015). Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production - Strategies for the elimination of feedback inhibition. Journal of Biotechnology 206, 26-37.
Kulis-Horn, R., Persicke, M., & Kalinowski, J., 2015. Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production - Strategies for the elimination of feedback inhibition. Journal of Biotechnology, 206, p 26-37.
R. Kulis-Horn, M. Persicke, and J. Kalinowski, “Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production - Strategies for the elimination of feedback inhibition”, Journal of Biotechnology, vol. 206, 2015, pp. 26-37.
Kulis-Horn, R., Persicke, M., Kalinowski, J.: Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production - Strategies for the elimination of feedback inhibition. Journal of Biotechnology. 206, 26-37 (2015).
Kulis-Horn, Robert, Persicke, Marcus, and Kalinowski, Jörn. “Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production - Strategies for the elimination of feedback inhibition”. Journal of Biotechnology 206 (2015): 26-37.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum.
Schwentner A, Feith A, Münch E, Stiefelmaier J, Lauer I, Favilli L, Massner C, Öhrlein J, Grund B, Hüser A, Takors R, Blombach B., Biotechnol Biofuels 12(), 2019
PMID: 30962820
Mapping the Structural Path for Allosteric Inhibition of a Short-Form ATP Phosphoribosyltransferase by Histidine.
Thomson CM, Alphey MS, Fisher G, da Silva RG., Biochemistry 58(28), 2019
PMID: 31251578
A dimeric catalytic core relates the short and long forms of ATP-phosphoribosyltransferase.
Mittelstädt G, Jiao W, Livingstone EK, Moggré GJ, Nazmi AR, Parker EJ., Biochem J 475(1), 2018
PMID: 29208762
Specific features of L-histidine production by Escherichia coli concerned with feedback control of AICAR formation and inorganic phosphate/metal transport.
Malykh EA, Butov IA, Ravcheeva AB, Krylov AA, Mashko SV, Stoynova NV., Microb Cell Fact 17(1), 2018
PMID: 29544475
Allosteric Activation Shifts the Rate-Limiting Step in a Short-Form ATP Phosphoribosyltransferase.
Fisher G, Thomson CM, Stroek R, Czekster CM, Hirschi JS, da Silva RG., Biochemistry 57(29), 2018
PMID: 29940105
Independent catalysis of the short form HisG from Lactococcus lactis.
Livingstone EK, Mittelstädt G, Given FM, Parker EJ., FEBS Lett 590(16), 2016
PMID: 27393206

68 References

Daten bereitgestellt von Europe PubMed Central.

Taxonomical studies on glutamic acid-producing bacteria
Abe, J. Gen. Appl. Microbiol. 13(3), 1967
Histidine biosynthetic pathway and genes: structure, regulation, and evolution.
Alifano P, Fani R, Lio P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB., Microbiol. Rev. 60(1), 1996
PMID: 8852895
The first step of histidine biosynthesis
Ames, J. Biol. Chem. 237(7), 1961
Studies on histidine fermentation: part I. l-Histidine production by histidine analog-resistant mutants from several bacteria
Araki, Agric. Biol. Chem. 35(13), 1971
Feedback-resistant phosphoribosyl-ATP pyrophosphorylase in l-histidine-producing mutants of Corynebacterium glutamicum
Araki, Agric. Biol. Chem. 38(11), 1974
Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development
Becker, Curr. Opin. Biotechnol. 23(), 2011
The quaternary structure of the HisZ-HisG N-1-(5'-phosphoribosyl)-ATP transferase from Lactococcus lactis.
Bovee ML, Champagne KS, Demeler B, Francklyn CS., Biochemistry 41(39), 2002
PMID: 12269828
The histidine operon and its regulation
Brenner, 1971
Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity.
Brosius J, Erfle M, Storella J., J. Biol. Chem. 260(6), 1985
PMID: 2579077
Gene-enzyme relationships in histidine biosynthesis in Bacillus subtilis.
Chapman LF, Nester EW., J. Bacteriol. 97(3), 1969
PMID: 4975750
Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum.
Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng AP., Appl. Environ. Microbiol. 80(4), 2013
PMID: 24334667
Modification of histidine biosynthesis pathway genes and the impact on production of L-histidine in Corynebacterium glutamicum
Cheng Y, Zhou Y, Yang L, Zhang C, Xu Q, Xie X, Chen N., Biotechnol. Lett. 35(5), 2013
PMID: IND500661129
Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis.
Cho Y, Sharma V, Sacchettini JC., J. Biol. Chem. 278(10), 2003
PMID: 12511575
Tyrosine latching of a regulatory gate affords allosteric control of aromatic amino acid biosynthesis.
Cross PJ, Dobson RC, Patchett ML, Parker EJ., J. Biol. Chem. 286(12), 2011
PMID: 21282100
Plasmid copy number and plasmid stability.
Friehs K., Adv. Biochem. Eng. Biotechnol. 86(), 2004
PMID: 15088763

Goodfellow, 2012
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
A single-nucleotide synonymous mutation in the gag gene controlling human immunodeficiency virus type 1 virion production.
Hamano T, Matsuo K, Hibi Y, Victoriano AF, Takahashi N, Mabuchi Y, Soji T, Irie S, Sawanpanyalert P, Yanai H, Hara T, Yamazaki S, Yamamoto N, Okamoto T., J. Virol. 81(3), 2006
PMID: 17121798
Removal of the C-terminal regulatory domain of α-isopropylmalate synthase disrupts functional substrate binding.
Huisman FH, Koon N, Bulloch EM, Baker HM, Baker EN, Squire CJ, Parker EJ., Biochemistry 51(11), 2012
PMID: 22352945
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source
Hüser, J. Biotechnol. 106(2–3), 2003
Amino acid production processes.
Ikeda M., Adv. Biochem. Eng. Biotechnol. 79(), 2003
PMID: 12523387
High efficiency transformation of Escherichia coli with plasmids.
Inoue H, Nojima H, Okayama H., Gene 96(1), 1990
PMID: 2265755
Transcriptional regulation of histidine biosynthesis genes in Corynebacterium glutamicum.
Jung S, Chun JY, Yim SH, Lee SS, Cheon CI, Song E, Lee MS., Can. J. Microbiol. 56(2), 2010
PMID: 20237580

Kassing, 1994
Protoplast transformation of glutamate-producing bacteria with plasmid DNA.
Katsumata R, Ozaki A, Oka T, Furuya A., J. Bacteriol. 159(1), 1984
PMID: 6145700
A "silent" polymorphism in the MDR1 gene changes substrate specificity.
Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM., Science 315(5811), 2006
PMID: 17185560
Taxonomic study of glutamic acid accumulating bacteria, Micrococcus glutamicus, nov. sp.
Kinoshita, Bull. Agric. Chem. Soc. Jpn. 22(), 1958
Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum
Kirchner, J. Biotechnol. 104(1–3), 2003
Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum.
Kulis-Horn RK, Persicke M, Kalinowski J., Microb Biotechnol 7(1), 2013
PMID: 23617600
High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde
Lindroth, Anal. Chem. 51(11), 1979
Codon usage patterns in Corynebacterium glutamicum: mutational bias, natural selection and amino acid conservation
Liu, Comp. Funct. Genomics 2010(1), 2010
Ribosomal RNA and ribosomal proteins in corynebacteria
Martín, J. Biotechnol. 104(1–3), 2003
The first enzyme in histidine biosynthesis: the nature of feedback inhibition by histidine
Martin, J. Biol. Chem. 238(1), 1963
[147] Enzymes and intermediates of histidine biosynthesis in Salmonella typhimurium
Martin, 1971
Cloning of the ATP phosphoribosyl transferase gene of Corynebacterium glutamicum and application of the gene to L-histidine production.
Mizukami T, Hamu A, Ikeda M, Oka T, Katsumata R., Biosci. Biotechnol. Biochem. 58(4), 1994
PMID: 7764856
Promoters and plasmid vectors of Corynebacterium glutamicum
Pátek, 2013
Mechanism of feedback allosteric inhibition of ATP phosphoribosyltransferase.
Pedreno S, Pisco JP, Larrouy-Maumus G, Kelly G, de Carvalho LP., Biochemistry 51(40), 2012
PMID: 22989207
Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis
Peirson, Nucleic Acids Res. 31(14), 2003
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways.
Schendzielorz G, Dippong M, Grunberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L., ACS Synth Biol 3(1), 2013
PMID: 23829416

AUTHOR UNKNOWN, 2002
An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis.
Sissler M, Delorme C, Bond J, Ehrlich SD, Renault P, Francklyn C., Proc. Natl. Acad. Sci. U.S.A. 96(16), 1999
PMID: 10430882
Histidine biosynthesis in plants.
Stepansky A, Leustek T., Amino Acids 30(2), 2006
PMID: 16547652
Development of fatty acid-producing Corynebacterium glutamicum strains.
Takeno S, Takasaki M, Urabayashi A, Mimura A, Muramatsu T, Mitsuhashi S, Ikeda M., Appl. Environ. Microbiol. 79(21), 2013
PMID: 23995924
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
In vitro synthesis of novel genes: mutagenesis and recombination by PCR.
Vallejo AN, Pogulis RJ, Pease LR., PCR Methods Appl. 4(3), 1994
PMID: 7580893
A Corynebacterium glutamicum mutant with a defined deletion within the rplK gene is impaired in (p)ppGpp accumulation upon amino acid starvation.
Wehmeier L, Brockmann-Gretza O, Pisabarro A, Tauch A, Puhler A, Martin JF, Kalinowski J., Microbiology (Reading, Engl.) 147(Pt 3), 2001
PMID: 11238976
Biosynthesis of histidine
Winkler, 1996
Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation.
Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H., Biotechnol. Bioeng. 110(11), 2013
PMID: 23737329
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25892668
PubMed | Europe PMC

Suchen in

Google Scholar