Task-dependent Modification of Leg Motor Neuron Synaptic Input Underlying Changes in Walking Direction and Walking Speed

Rosenbaum P, Schmitz J, Schmidt J, Bueschges A (2015)
Journal of Neurophysiology 144(2): 1090-1101.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Rosenbaum, Philipp; Schmitz, JosefUniBi ; Schmidt, Joachim; Bueschges, Ansgar
Abstract / Bemerkung
Animals modify their behavior constantly to perform adequately in their environment. In terrestrial locomotion many forms of adaptation exist. Two tasks are changes of walking direction and walking speed. We investigated these two changes in motor output in the stick insect Cuniculina impigra to see how they are brought about at the level of leg motor neurons. We used a semi-intact preparation in which we can record intracellularly from leg motor neurons during walking. In this single-leg preparation the middle leg of the animal steps in a vertical plane on a treadwheel. Stimulation of either abdomen or head reliably elicits fictive forward or backward motor activity, respectively, in the fixed and otherwise deafferented thorax-coxa joint. With a change of walking direction only thorax-coxa-joint motor neurons protractor and retractor changed their activity. The protractor switched from swing activity during forward to stance activity during backward walking, and the retractor from stance to swing. This phase switch was due to corresponding change of phasic synaptic inputs from inhibitory to excitatory and vice versa at specific phases of the step cycle. In addition to phasic synaptic input a tonic depolarization of the motor neurons was present. Analysis of changes in stepping velocity during stance showed only a significant correlation to flexor motor neuron activity, but not to that of retractor and depressor motor neurons during forward walking. These results show that different tasks in the stick insect walking are generated by altering synaptic inputs to specific leg joint motor neurons only.
Erscheinungsjahr
2015
Zeitschriftentitel
Journal of Neurophysiology
Band
144
Ausgabe
2
Seite(n)
1090-1101
ISSN
0022-3077
Page URI
https://pub.uni-bielefeld.de/record/2757567

Zitieren

Rosenbaum P, Schmitz J, Schmidt J, Bueschges A. Task-dependent Modification of Leg Motor Neuron Synaptic Input Underlying Changes in Walking Direction and Walking Speed. Journal of Neurophysiology. 2015;144(2):1090-1101.
Rosenbaum, P., Schmitz, J., Schmidt, J., & Bueschges, A. (2015). Task-dependent Modification of Leg Motor Neuron Synaptic Input Underlying Changes in Walking Direction and Walking Speed. Journal of Neurophysiology, 144(2), 1090-1101. doi:10.1152/jn.00006.2015
Rosenbaum, Philipp, Schmitz, Josef, Schmidt, Joachim, and Bueschges, Ansgar. 2015. “Task-dependent Modification of Leg Motor Neuron Synaptic Input Underlying Changes in Walking Direction and Walking Speed”. Journal of Neurophysiology 144 (2): 1090-1101.
Rosenbaum, P., Schmitz, J., Schmidt, J., and Bueschges, A. (2015). Task-dependent Modification of Leg Motor Neuron Synaptic Input Underlying Changes in Walking Direction and Walking Speed. Journal of Neurophysiology 144, 1090-1101.
Rosenbaum, P., et al., 2015. Task-dependent Modification of Leg Motor Neuron Synaptic Input Underlying Changes in Walking Direction and Walking Speed. Journal of Neurophysiology, 144(2), p 1090-1101.
P. Rosenbaum, et al., “Task-dependent Modification of Leg Motor Neuron Synaptic Input Underlying Changes in Walking Direction and Walking Speed”, Journal of Neurophysiology, vol. 144, 2015, pp. 1090-1101.
Rosenbaum, P., Schmitz, J., Schmidt, J., Bueschges, A.: Task-dependent Modification of Leg Motor Neuron Synaptic Input Underlying Changes in Walking Direction and Walking Speed. Journal of Neurophysiology. 144, 1090-1101 (2015).
Rosenbaum, Philipp, Schmitz, Josef, Schmidt, Joachim, and Bueschges, Ansgar. “Task-dependent Modification of Leg Motor Neuron Synaptic Input Underlying Changes in Walking Direction and Walking Speed”. Journal of Neurophysiology 144.2 (2015): 1090-1101.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Design process and tools for dynamic neuromechanical models and robot controllers.
Szczecinski NS, Hunt AJ, Quinn RD., Biol Cybern 111(1), 2017
PMID: 28224266

71 References

Daten bereitgestellt von Europe PubMed Central.

Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system.
Akay T, Ludwar BCh, Goritz ML, Schmitz J, Buschges A., J. Neurosci. 27(12), 2007
PMID: 17376989
Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
Akay T, Haehn S, Schmitz J, Buschges A., J. Neurophysiol. 92(1), 2004
PMID: 14999042

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677

AUTHOR UNKNOWN, 0
Single perturbations cause sustained changes in searching behavior in stick insects.
Berg E, Buschges A, Schmidt J., J. Exp. Biol. 216(Pt 6), 2012
PMID: 23197090
Neuronal control of Drosophila walking direction.
Bidaye SS, Machacek C, Wu Y, Dickson BJ., Science 344(6179), 2014
PMID: 24700860
Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
Bucher D, Akay T, DiCaprio RA, Buschges A., J. Neurophysiol. 89(3), 2003
PMID: 12626610
Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies.
Buford JA, Smith JL., J. Neurophysiol. 64(3), 1990
PMID: 2230922
Adaptive control for backward quadrupedal walking. I. Posture and hindlimb kinematics.
Buford JA, Zernicke RF, Smith JL., J. Neurophysiol. 64(3), 1990
PMID: 2230921

AUTHOR UNKNOWN, 0
Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
Buschges A, Ludwar BCh, Bucher D, Schmidt J, DiCaprio RA., Eur. J. Neurosci. 19(7), 2004
PMID: 15078559
Mechanosensory feedback in walking: From joint control to locomotor patterns.
Buschges A, Gruhn M., Advances in insect physiology. 34(), 2008
PMID: IND44011216

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Control of stepping velocity in a single insect leg during walking.
Gabriel JP, Buschges A., Philos Trans A Math Phys Eng Sci 365(1850), 2007
PMID: 17148059
Circuits controlling vertebrate locomotion: moving in a new direction.
Goulding M., Nat. Rev. Neurosci. 10(7), 2009
PMID: 19543221

AUTHOR UNKNOWN, 0

Graham, J Exp Biol 296(), 1985

AUTHOR UNKNOWN, 0
Neural networks that co-ordinate locomotion and body orientation in lamprey.
Grillner S, Deliagina T, Ekeberg O , el Manira A, Hill RH, Lansner A, Orlovsky GN, Wallen P., Trends Neurosci. 18(6), 1995
PMID: 7571002
The motor infrastructure: from ion channels to neuronal networks.
Grillner S., Nat. Rev. Neurosci. 4(7), 2003
PMID: 12838332
On the central generation of locomotion in the low spinal cat.
Grillner S, Zangger P., Exp Brain Res 34(2), 1979
PMID: 421750
Control of stepping velocity in the stick insect Carausius morosus.
Gruhn M, von Uckermann G, Westmark S, Wosnitza A, Buschges A, Borgmann A., J. Neurophysiol. 102(2), 2009
PMID: 19535483
Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis.
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540

Haspel, Caenorhabditis elegans. J Neurosci 30(), 2010

AUTHOR UNKNOWN, 0
Sensorimotor pathways involved in interjoint reflex action of an insect leg.
Hess D, Buschges A., J. Neurobiol. 33(7), 1997
PMID: 9407012

Jander, 1982

AUTHOR UNKNOWN, 0
Locomotor circuits in the mammalian spinal cord.
Kiehn O., Annu. Rev. Neurosci. 29(), 2006
PMID: 16776587
Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front-leg walking.
Ludwar BCh, Westmark S, Buschges A, Schmidt J., J. Neurophysiol. 94(4), 2005
PMID: 16000520
Principles of rhythmic motor pattern generation.
Marder E, Calabrese RL., Physiol. Rev. 76(3), 1996
PMID: 8757786
Common inhibitory motoneurones in insects.
Pearson KG, Bergman SJ., J. Exp. Biol. 50(2), 1969
PMID: 5795092
Adaptive motor behavior in insects.
Ritzmann RE, Buschges A., Curr. Opin. Neurobiol. 17(6), 2007
PMID: 18308559
Origin of excitatory drive to a spinal locomotor network.
Roberts A, Li WC, Soffe SR, Wolf E., Brain Res Rev 57(1), 2007
PMID: 17825424

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The central complex and the genetic dissection of locomotor behaviour.
Strauss R., Curr. Opin. Neurobiol. 12(6), 2002
PMID: 12490252
A higher control center of locomotor behavior in the Drosophila brain.
Strauss R, Heisenberg M., J. Neurosci. 13(5), 1993
PMID: 8478679
Spatial co-ordination of foot contacts in unrestrained climbing insects.
Theunissen LM, Vikram S, Durr V., J. Exp. Biol. 217(Pt 18), 2014
PMID: 25013102

Von, 2008

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Wolf, J Exp Biol 304(), 1990
Inhibitory motoneurons in arthropod motor control: organisation, function, evolution.
Wolf H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 200(8), 2014
PMID: 24965579
Inter-leg coordination in the control of walking speed in Drosophila.
Wosnitza A, Bockemuhl T, Dubbert M, Scholz H, Buschges A., J. Exp. Biol. 216(Pt 3), 2012
PMID: 23038731
Segment-specific and state-dependent targeting accuracy of the stick insect.
Wosnitza A, Engelen J, Gruhn M., J. Exp. Biol. 216(Pt 22), 2013
PMID: 23948479
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26063769
PubMed | Europe PMC

Suchen in

Google Scholar