Egomotion Estimation with Dense Flow Fields: MATLAB Scripts
Strübbe S, Stürzl W, Egelhaaf M (2015)
Bielefeld University.
Datenpublikation | Englisch
Einrichtung
Abstract / Bemerkung
These are the matlab scripts used for the numerical analysis in the paper "Insect-inspired Self-Motion Estimation with Dense Flow Fields - An Adaptive Matched Filter Approach". The scripts are separated in two different main simulations. The first part compares the standard Koenderink van Doorn (KvD) approach against the modified KvD approach under the condition of an increasing number of given flow vectors. The second part compares the standard Matched Filter Approach (MFA) by Franz and Krapp against a new adaptive MFA.
Erscheinungsjahr
2015
Copyright und Lizenzen
Page URI
https://pub.uni-bielefeld.de/record/2736885
Zitieren
Strübbe S, Stürzl W, Egelhaaf M. Egomotion Estimation with Dense Flow Fields: MATLAB Scripts. Bielefeld University; 2015.
Strübbe, S., Stürzl, W., & Egelhaaf, M. (2015). Egomotion Estimation with Dense Flow Fields: MATLAB Scripts. Bielefeld University. doi:10.4119/unibi/2736885
Strübbe, Simon, Stürzl, Wolfgang, and Egelhaaf, Martin. 2015. Egomotion Estimation with Dense Flow Fields: MATLAB Scripts. Bielefeld University.
Strübbe, S., Stürzl, W., and Egelhaaf, M. (2015). Egomotion Estimation with Dense Flow Fields: MATLAB Scripts. Bielefeld University.
Strübbe, S., Stürzl, W., & Egelhaaf, M., 2015. Egomotion Estimation with Dense Flow Fields: MATLAB Scripts, Bielefeld University.
S. Strübbe, W. Stürzl, and M. Egelhaaf, Egomotion Estimation with Dense Flow Fields: MATLAB Scripts, Bielefeld University, 2015.
Strübbe, S., Stürzl, W., Egelhaaf, M.: Egomotion Estimation with Dense Flow Fields: MATLAB Scripts. Bielefeld University (2015).
Strübbe, Simon, Stürzl, Wolfgang, and Egelhaaf, Martin. Egomotion Estimation with Dense Flow Fields: MATLAB Scripts. Bielefeld University, 2015.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Open Data Commons Attribution License (ODC-By) v1.0:
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:31Z
MD5 Prüfsumme
1201eeeb6451d3adb9ba562971cfc06b